Invitación Examen de Grado de Jorge Maggiolo Tapia

El Instituto de Física tiene el agrado de invitarles al Examen de Grado para la obtención del grado académico de Magíster en Ciencias con mención en Física:

Título: “Métodos holográficos y la fórmula de Cardy-Verlinde en AdS/CFT”
Tesita: JORGE PATRICIO MAGGIOLO TAPIA (PUCV)
Fecha: Lunes 26 de abril 2021, 09:00 hrs

Comisión de Tesis conformada por:
Sr. Dumitru Astefanesei (Tutor – PUCV)
Sr. Andrés Anabalon (UAI)
Sr. Radouane Gannouji (PUCV)
Sr. Nelson Videla (PUCV)

Personas Interesadas por favor regístrarse con Lorena Aguirre (dirfis@pucv.cl), para el envío del enlace plataforma Zoom.

Están cordialmente invitados!

Fallecimiento del Sr. Esteban Rivera Villarroel

Estimada Comunidad,

Lamentamos comunicar el sensible y triste fallecimiento del Sr. Esteban Rivera Villarroel (Q.E.P.D.), padre del profesor y compañero del trabajo, Sr. Rodrigo Rivera Campos.

El Sr. Esteban Rivera, tenía 93 años y se desempeñó como profesor de Castellano, ejerciendo gran parte de su vida en el Liceo de Villa Alemana.

Los funerales se van a realizar el día mañana miércoles 14 de abril, a las 15:00 hrs en el Cementerio Parque del Mar. Dada las circunstancias actuales en las que estamos viviendo, no nos permiten acompañar presencialmente a nuestro colega y amigo. Los dejamos invitados a realizar una oración por el descanso eterno de su padre.

Enviamos nuestras sentidas condolencias a toda su familia ante esta irreparable pérdida.

Invitación Examen de Grado de Nicole Andrea Rivas Quiroz

El Instituto de Física tiene el agrado de invitarles al Examen de Grado para la obtención del grado académico de Magíster en Ciencias con Mención en Física.

Título: “The circumgalactic medium of a z=0.5 isolated galaxy along its minor-axis”
Tesita: NICOLE ANDREA RIVAS QUIROZ (PUCV)
Fecha: Jueves 08 de Abril 2021, 11:00 hrs

Comisión de Tesis conformada por:
Dr. Nicolás Tejos (PUCV, profesor guía)
Dr. Sebastián López (U. de Chile)
Dr. Cristobal Sifón (PUCV)
Dr. María Argudo-Fernández (PUCV)

Personas Interesadas por favor regístrarse con Lorena Aguirre (dirfis@pucv.cl), para el envío del enlace plataforma Zoom.

Están todos cordialmente invitados!

“Quería explorar un tema de física aplicada que tuviera un impacto social”

Darío Pérez es parte de nuestro Instituto desde el año 2004. Académico e investigador, realizó su Doctorado en el Centro de Investigaciones Ópticas de la Universidad de La Plata. Desde su llegada ha ganado diversos proyectos de investigación fundando el Laboratorio de Óptica Atmosférica y Estadística (@SOL, del ingles Atmospheric and Statistical Optics Laboratory) que dirige desde su creación. Actualmente es Profesor Titular en el Instituto y además se desempeña como co-director del Centro de Óptica Adaptiva de Valparaíso (CAOVa). Ha sido reconocido en distintas oportunidades por sus contribuciones científicas y académicas.

¿Cuáles son tus principales temas de investigación y cómo fueron tus inicios en ellos?

“Mi principal tema de investigación es la propagación de luz en medios turbulentos. Cuando comencé, creo que no había nadie en Latinoamérica que trabajara en este tema, así fue un trabajo en solitario bastante duro, pero una gran experiencia para mí. La presentación que hizo mi antiguo tutor (Dr. Mario Garavaglia) en ese momento es que iba a trabajar en un área que era inexplorada [en latinoamérica] y que iba a tener un gran impacto en la astronomía. Él, lo que pensaba era tener un impacto cercano a la corrección de lo que la turbulencia hace sobre los telescopios. Pero en las condiciones en que nos encontrábamos estábamos muy lejos de lo que se podía lograr y muy lejos de un telescopio. Primero en cuanto a conocimientos y segundo, no habiendo otros especialistas, en capacidad—La Plata se encuentra a más de 1500 km de los telescopios ópticos de clase mundial en Chile. Es un tema muy complejo que requiere mucho esfuerzo colaborativo entre ingenieros, físicos y astrónomos para resolverlo; sigue siendo un gran problema de la astronomía actual.”

¿Qué te motivó a seguir trabajando en este tema?

“Era un gran desafío. Yo estaba buscando algo que tuviera algún impacto social y que no tuviera la abstracción que muchos temas de física teórica tienen—que son difíciles de llevar al público. Su impacto social es bajo en términos de la aplicación tecnológica. No es que no exista, sino que el camino es largo y el tiempo de aplicación entre un resultado teórico y su puesta en práctica pueden ser unas cuantas decenas de años. Yo en la licenciatura ya había hecho un trabajo en física de partículas y decidí que ese tipo de temas no era algo que me atrajera. Quería explorar un tema de física aplicada que tuviera un impacto social a tiempo medio y así empecé a trabajar en esto y con el tiempo fui encontrando caminos de aplicación, pero eso requirió de un trabajo importante.”

¿Cómo fue tu experiencia al llegar a Chile?

“Era una época en la que el Instituto de Física estaba mutando, como luego mutó toda la Universidad. Pasó de ser un lugar donde se hacía principalmente docencia a convertirse en un lugar donde se hacía investigación. Yo fui uno de los primeros profesores contratados con perfil científico. Era un desafío. Había que ganar proyectos y había que equipar un laboratorio que no existía. También fue por una necesidad mía, porque en Argentina estaba claro que el camino para alguien que quería hacer investigación y que quería independizarse no era posible porque también los temas de investigación estaban muy limitados a ciertos grupos que ya tenían una fortaleza política [partidaria]. Lamentablemente la ciencia en Argentina se mueve más por política y por contactos que por parámetros más objetivos. Era muy difícil crecer ahí en un ámbito tan hostil y llegar a Chile daba muchas oportunidades. Logré ganar algunos concursos FONDECYT y eso permitió crear el Laboratorio de Óptica Atmosférica y Estadística (@SOL) que dirijo desde su origen.”

Eclipse con ciencia

Con ocasión del Eclipse Solar del 14 de diciembre del 2020 en la zona de la Araucanía en Chile, Darío dirigió un experimento colaborativo que invitaba a la comunidad a convertirse en científicos recolectando datos sobre las “Cintas de Sombra”, un fenómeno que se puede observar en los eclipses totales de Sol y que podría ayudarnos mejorar el desempeño de los telescopios de última generación que se están instalando en nuestro país.

¿Cuál era la idea y qué resultados se buscaban al realizar este experimento durante el eclipse del 14 de diciembre?

“La idea era realizar un experimento colaborativo para obtener información de cómo se comportan la turbulencia a baja altura, que es un fenómeno muy poco comprendido. Se sabe mucho de la turbulencia libre por encima del kilómetro de altura, pero por debajo de él hay mucha interferencia de la superficie y hace que esa turbulencia se comporte de una manera que es atípica. Con el eclipse íbamos a ver como esa turbulencia de baja altura se comporta, o íbamos a tratar de inferirlo. La idea era tener muchos participantes que observarán un fenómeno que se aprecia bien en la zona de totalidad del eclipse y que consiste en observar al suelo, mirando en una pantalla donde aparecen unas cintas de luz y sombra que se mueven y que se capturan con una cámara de celular. Esos videos se iban a subir a una plataforma web e íbamos a recolectar toda esa información. Esa era la idea del experimento colaborativo Eclipse con Ciencia”

¿Por qué se optó por realizar un experimento que convocara abiertamente a la comunidad?

“El concepto es muy lindo. De alguna manera el proceso era intentar que la gente se incorporara al método científico. Eso en parte funcionó, aunque no tuvimos tantos voluntarios como esperábamos. Tuvimos alrededor de 10 experimentos, aunque de estos no todos tuvieron éxito. Si hubiesen sido 10 experimentos exitosos hubiera sido fantástico, porque era el numero que yo esperaba tener como mínimo; sin embargo el clima nos jugó una mala pasada. Pero esto nos enseña a pensar el experimento de otra manera para una próxima oportunidad.”

De acuerdo con esta experiencia ¿Cuáles son los resultados y aprendizajes de este primer experimento colaborativo?

“Por un lado, el experimento como yo lo tenia pensado, en general, fracasó. Pero el concepto en sí sigue siendo muy interesante. Esta podría ser la versión 1.0 del experimento, entonces el camino para mi ahora es ver en que se equivocó y que se puede corregir para que en el próximo intento las chances de fracaso sean menores y poder medir el objetivo. Así funciona la ciencia experimental. A la gente que participó le envié un mensaje luego del eclipse de cómo habíamos fracasado, pero había sido un éxito de todas maneras porque todos habíamos aprendido cosas. Es así que cuando uno planea un experimento, hay variables que pueden quedar fuera de nuestro control. Por otro lado, no tuvo el alcance que esperaba, entiendo que el tiempo de planificación para un experimento de esta magnitud cuando uno espera que tenga participación [amplia] debe ser con muchos meses de anticipación; además de tener muy claro el rol de las redes sociales. Ahora, con todo aprendido se puede planear un nuevo experimento para los próximos eclipses pensando [y mostrando] que este tipo de experimentos colaborativos tiene un gran valor para la sociedad.”

Darío Pérez https://fis.ucv.cl/dperez/

CAOVa http://caova.pucv.cl/.

Invitación avance de tesis de doctorado F. Javier Moreno

Tenemos el agrado de invitarles el lunes 5 de abril a las 12:00 horas al Examen de Avance de tesis para la obtención del grado académico de Doctorado en Ciencias Físicas:

Título: Holographic entanglement entropy and higher-curvature gravity
Tesista: F. Javier Moreno (PUCV)
Fecha: Lunes 5 de abril 2021, a las 12:00 horas.

Continue reading

Invitación avance de tesis doctoral Yolbeiker Rodríguez

El día jueves 11 de Marzo del 2021 a las 14 hrs, el estudiante de doctorado en física Yolbeiker Rodríguez presentará su trabajo en agujeros negros titulado “Classical Stability and Formation of Black Holes Beyond General Relativity”

Centro de Óptica Adaptiva de Valparaíso (CAOVA) se adjudicó proyecto FONDECYT para sistema de medición de turbulencia en observatorios

Por Daniel Gallardo (Periodista en Laboratorio de Optoelectrónica PUCV)

El Dr. Darío Pérez, académico e investigador del laboratorio de óptica atmosférica y estadística del Instituto de Física (IFIS) de la Facultad de Ciencias de la Pontificia Universidad Católica de Valparaíso (PUCV), quien además se desempeña como co-director del Centro de Óptica Adaptiva de Valparaíso (CAOVA), proyecto que desarrolla junto al Dr. Esteban Vera, del laboratorio de optoelectrónica de la Escuela de Ingeniería Eléctrica (EIE) de la misma casa de estudios, acaba de adjudicarse financiamiento para el desarrollo de un proyecto que busca diseñar un sistema de medición de turbulencia al interior de los VLT, o telescopios de gran tamaño.

Esta iniciativa, titulada Realtime dome turbulence characterization through image motion and scintillation of passive targets -1211848-, enmarcada en el Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) de la Agencia Nacional de Investigación y Desarrollo (ANID) -ex CONICYT- comprende un trabajo por cuatro años de investigación. Sobre este proyecto, el docente nos comentó lo siguiente:

¿En qué contexto se da esta investigación? ¿Cómo se originó la idea?

Darío (D): Se trata de algo que ya vengo estudiando desde hace un tiempo. Es un sistema que un colega mío planteó, y que permite recolectar información de la turbulencia, observando una matriz de LEDs distribuidos en columnas. Es un concepto simple, de observar cada punto individual junto a sus cercanos para obtener información. Ahora, la técnica está en observar un objeto que está muy, muy lejos.

Sucede que tiene varios defectos, por ejemplo, en la detección de anisotropía. No la detecta claramente. Sabe que hay, pero no puede cuantificarla. Otra problemática que surge es que no considera otro tipo de regiones que no sean recintos amplios o grandes distancias entre la fuente de luz y el observador. A raíz de esto, hicimos un experimento hace dos años. Ahí nos dimos cuenta de que los modelos numéricos originales no podían aplicarse en laboratorio, porque la propagación es muy corta, por lo que era necesario evaluarlos. Entonces, con un estudiante de postgrado, trabajamos en esa situación. En paralelo, otro alumno está viendo fenómenos de centelleo o fluctuaciones de irradiancia de objetos de gran tamaño. Pensando en ambos problemas, al tener un poco de similitud, se me ocurrió elaborar una técnica híbrida que permita observar ambas situaciones de forma simultánea, de forma de adquirir aún más información. Se propone entonces, que esto se aplique en el domo de un observatorio, no solo en los telescopios tradicionales, sino también pensando en la llegada de los ELT, telescopios de gran tamaño en los próximos años. Recordemos que estos espacios afectan la observación…

La idea es introducir un sistema que pueda funcionar 24/7. De ser aplicado apropiadamente, lo que sugerimos es en vez de emplear fuentes de luz artificial -LEDs-, que se observen algunos blancos durante la noche, considerando que sea una cantidad mínima de luz para que la cámara los detecte. Es el ideal, que el sistema funcione sin interferir la actividad del telescopio. Entonces, tener una plataforma que permite en todo momento decir cuál es el estado de la turbulencia al interior del domo. Es particularmente ambicioso, porque al disponer de poca luz, se debe definir cuál es la cámara apropiada. Otra novedad que tendría esta actualización de la técnica original sería que usaríamos dos cámaras para el arreglo, para poder localizar la turbulencia en el espacio. Esto abre el espacio para hacer telemetría. Lo que busca lograrse con CAOVA es mejorar la técnica original, al observar el mismo blanco con dos o más cámaras en el arreglo. El problema de ingeniería acá es, entonces, ver cómo trabajamos con el volumen de información que emanan ambas cámaras, para lo que tendremos que generar un sistema de IA que permita discriminar en esa muestra el material realmente disponible. Estamos hablando de imágenes de una gran resolución, y que se generan en gran cantidad por segundo.

¿Quiénes integrarán el equipo de trabajo? ¿cuál es el esquema de trabajo visualizado?

D: El profesor Vera participará como co-investigador, como también se sumarán estudiantes de postgrado que integran los laboratorios del Centro. Una parte de este primer semestre contempla ver cuál cámara es la mejor candidata para la realización del proyecto. Este mismo tiene una extensión de cuatro años. A grandes rasgos, en el primer año nos enfocamos en el modelo teórico, donde hay algunos incertezas que cubrir, como también validar nuestra propuesta con un solo blanco. Algo de ello está ya adelantado junto con el CAOVA. Para el segundo año viene el análisis y viene ya la integración del sistema de IA para que procese lo que le está llegando de las cámaras. Pensamos a finales de ese año, hacer una campaña, que es bien probable que se pueda hacer, con la situación sanitaria mucho más tranquila. Al tercer año se haría un trabajo experimental con más de un blanco para telemetría y tomografía. Con eso implementado, haríamos una o dos campañas en el VLT nuevamente. De ser exitoso, podríamos ya pensar en el cuarto año tener una versión funcional que esté operando en el VLT durante un par de semanas. Con tener dos campañas en el VLT, nos daremos por satisfechos con la realización de esta propuesta, lo que podría abrir una eventual colaboración con el Observatorio Europeo Austral.

¿A qué tipo de equipamiento y herramientas se debe recurrir en una investigación de este tipo?

D: Este proyecto se centra en la elaboración de hardware. Para lo que es la prueba de concepto, tenemos comprometidas dos cámaras de alta velocidad muy sensibles a la luz. Además, está considerada la compra de lentes, como de equipamiento optomecánico, que nos sirve para realizar montajes. Todo esto de una gran suma de dinero. Luego viene un dispositivo llamado digital mirror device, un arreglo de fibra óptica para realizar una transmisión rápida de datos con un termómetro de alta sensibilidad. Después también tenemos sistemas de control en forma de microcomputadoras, herramientas de servicio y alojamiento para nuestros datos. Un gran componente de este FONDECYT es apoyarnos en la compra de equipamiento especializado. Además de la infraestructura ya disponible, que, al menos en el laboratorio, provienen de ya cinco proyectos de este tipo ya ejecutados previamente.

Eventualmente, de concretar con éxito la investigación: ¿qué posibilidades abriría a futuro este proyecto?

D: Hay muchas. Estos sistemas, que son de sensado remoto y que se diseñan para calificar el estado de la turbulencia, funcionará como una estación metereológica al interior del domo, 24/7 todos los días. Lo que estás haciendo con este sistema, al estar midiendo la turbulencia en todo momento es tener información de otros fenómenos que pueden afectar las comunicaciones ópticas no necesariamente en entornos ligados a la astronomía, como podría ser el saber la concentración de vapor de agua en un bosque o en algún cultivo. Desde la perspectiva del impacto ambiental, permitiría, en una versión más económica claro, saber, siguiendo el ejemplo anterior, cuánta agua necesitas para realizar un cultivo de manera óptima. En esa línea, para un sistema que apoye el monitoreo en contextos de agricultura, podría ser una idea bastante interesante de explorar, porque podrías distribuir mejor ese recurso.

Para concluir, ¿qué vínculo se puede establecer entre la inteligencia artificial y las problemáticas ligadas a la óptica, la física y la instrumentación? ¿por qué indagar en estas áreas?

D: Es un tema en discusión. Creo que la IA, para estos problemas que demandan grandes volúmenes de información, los cuales sabemos analizar pero que necesitan de un individuo preparado por grandes porciones de tiempo, es muy eficiente. A pesar de la sofisticación que puede tener un científico preparado o un estudiante, en cuanto a tiempo, no sería eficaz. El tema es que, un sistema entrenado, puede apoyar esas tareas que pueden resultar engorrosas. Al sistema se le hace entender los parámetros con los cuales una persona hace una evaluación. Aprender del humano, luego de muchas pruebas. En todo lo que es sensado remoto, la gente de mi área está discutiendo sobre las posibilidades e intervenciones que la IA puede hacer en la recolección de datos, en este caso, para óptica.

Para conocer más sobre el Centro de Óptica Adaptiva de Valparaíso (CAOVA) y el laboratorio de optoelectrónica de la EIE, puede visitarse el sitio web oficial de cada uno.

Fallecimiento de Sr. Andrés Araya Julio

Estimada Comunidad,

Lamentamos informar el sensible y triste fallecimiento del Sr. Andrés Araya Julio (Q.E.P.D.),  profesor de Física y ex-alumno de nuestro Instituto.

Andrés ingresó el año 2005 al Programa de Bachiller en Ciencias de la PUCV, y en el segundo semestre del año 2007 continuó sus estudios como alumno de nuestro Instituto. Andrés trabajó como parte del grupo de Tecnología Educativa y fué un alumno destacado. Actualmente se desempeñaba como profesor de Física en el Colegio Robles de Villa Alemana.

Enviamos nuestras sentidas condolencias a toda su familia ante esta irreparable pérdida.

“Me gusta que (los estudiantes) participen en actividades científicas desde el comienzo de su formación”

Mónica García es Doctora en Física y trabaja en nuestro Instituto desde el 2013. Comenzó siendo invitada como investigadora joven para luego convertirse en Profesora Auxiliar. Su trabajo incluye aspectos teóricos, experimentales y numéricos, centrándose especialmente en dinámica no lineal. En la actualidad forma parte del Grupo de Sistemas Complejos y realiza un interesante labor junto a estudiantes de licenciatura y postgrado.

Mónica ¿En que te encuentras trabajando actualmente?

“Uno de los trabajos que estoy desarrollando en este momento es una colaboración con Claudia Trejo, otra profesora del Grupo de Sistemas Complejos. Ella trabaja en microfluídica y microcanales estudiando la dinámica de ciertos fluidos en estos microcanales. En este momento, estamos estudiando cómo la dinámica del frente microfluídico es afectada por la presencia de pequeños defectos o imperfecciones en el canal.”

¿Nos puedes contar en qué consiste este trabajo colaborativo?

“Ella hace los experimentos y yo estoy trabajando en hacer unas simulaciones sencillas de esa dinámica de fluidos. Mi trabajo consiste en tratar de modelar el fluido en una simulación sencilla, porque generalmente las simulaciones de ese tipo de fluidos es complicada y necesita muchos recursos, entonces, lo que yo propuse fue una especie de ecuación fenomenológica que fuera sencilla y que atrape las principales características del fluido que queremos estudiar. De hecho estamos trabajando en Phyton haciendo un código para simular ese fluido. Tenemos bastante de este tipo de trabajos colaborativos.”

“La mayoría de los estudiantes son muy motivados, entonces uno tiene una fuente inagotable de personas que están interesadas en hacer ciencia. Yo creo que esa es una buena característica del Instituto.”

Otro de los aspectos importantes de tu labor en el Instituto es el trabajo junto a los estudiantes ¿Cómo ha sido esa experiencia?

“La mayoría de los estudiantes son muy motivados, entonces uno tiene una fuente inagotable de personas que están interesadas en hacer ciencia. Yo creo que esa es una buena característica del Instituto. De hecho, gran parte de mi investigación se hace con estudiantes. Mi intención es que participen y que vayan a congresos a presentar sus trabajos, incluso estudiantes de licenciatura han viajado conmigo a distintos congresos en Latinoamérica. Tienen que preparar su presentación en inglés, hacer todos los esfuerzos por asistir y, la verdad, les va bastante bien. Me gusta que participen en actividades científicas desde el comienzo de su formación y en ese sentido la experiencia ha sido bastante exitosa.”

En ese sentido ¿Cómo llegan los estudiantes a interesarse por trabajar junto al Grupo de Sistemas Complejos?

“Nosotros tenemos dos fuentes de atracción. Una, que es la más exitosa, son las ayudantías de verano. Esto se le ofrecen a todos los estudiantes de la carrera y pueden postular a cualquiera de las áreas que se trabajan en el Instituto, quienes quedan elegidos, trabajan con nosotros durante el verano. Generalmente les gusta tanto la actividad que se quedan con nosotros para hacer el seminario de investigación, esa es la segunda fuente de atracción, esta es una pequeña investigación de un semestre para graduarse. Luego de esto muchos deciden quedarse y hacer el magíster o doctorado. También hemos tenido personas que viene desde otras universidades a hacer el doctorado porque en la zona central solo trabajamos sistemas complejos nosotros y un grupo en Santiago, entonces se sienten atraídas para venir acá.”