Coloquio IFIS: “New Zealand Radio Astronomy: Past, present, and perspectives of NZ-Chile collaboration”

El próximo miércoles 7 de mayo, a partir de las 11:00 AM, Sergei Gulyaev, profesor de Astronomía en la Escuela de Ingeniería, Informática y Ciencias Matemáticas de la Universidad Tecnológica de Auckland, Nueva Zelanda, presentará “New Zealand Radio Astronomy: Past, present, and perspectives of NZ-Chile collaboration” en un nuevo Coloquio del IFIS PUCV. El encuentro tendrá lugar en la sala 208 del Instituto de Física.

Te dejamos el abstract de la presentación:

New Zealand radio astronomy has experienced two defining periods: an early emergence in the 1940s alongside the birth of the field, and a resurgence in the 21st century with the creation of the Warkworth Radio Astronomical Observatory at AUT. In this talk, Prof. Gulyaev will present current projects and instruments, recent changes post-pandemic, and future prospects — especially regarding the collaboration between AUT and the PUCV Institute of Physics.

Coloquio IFIS: “The anomalous magnetic moment of the muon and what it can teach us”

Este miércoles 30 de abril desde las 10:30 AM, Anton Rebhan, profesor de física teórica de la Universidad Tecnológica de Viena, Austria, presentará “The anomalous magnetic moment of the muon and what it can teach us” en un nuevo Coloquio del IFIS PUCV. El evento se llevará a cabo en la sala 208 del Instituto de Física.

Te dejamos el abstract de la exposición:

The magnetic moment of the muon will soon be measured with a precision of 11 digits, with results from an experiment at Fermilab to be released in the coming weeks. Its anomaly, the deviation from the value given by the Dirac equation, is one of the most stringent tests of the Standard Model of particle physics. At this level of precision, quantum fluctuations make it sensitive to potential physics beyond the Standard Model at scales that are even beyond reach of high-energy collider experiments. For nearly two decades, a persistent discrepancy between theory and experiment has been interpreted as an indication of New Physics. Recently it became clear, however, that at least a substantial part of this mismatch is due to an insufficiently precise understanding of hadron physics. After reviewing the state of affairs, I will discuss how methods derived from string theory have helped to sort out some of the open problems.