Por Daniel Gallardo (Periodista en Laboratorio de Optoelectrónica PUCV)
El Dr. Darío Pérez, académico e investigador del laboratorio de óptica atmosférica y estadística del Instituto de Física (IFIS) de la Facultad de Ciencias de la Pontificia Universidad Católica de Valparaíso (PUCV), quien además se desempeña como co-director del Centro de Óptica Adaptiva de Valparaíso (CAOVA), proyecto que desarrolla junto al Dr. Esteban Vera, del laboratorio de optoelectrónica de la Escuela de Ingeniería Eléctrica (EIE) de la misma casa de estudios, acaba de adjudicarse financiamiento para el desarrollo de un proyecto que busca diseñar un sistema de medición de turbulencia al interior de los VLT, o telescopios de gran tamaño.
Esta iniciativa, titulada Realtime dome turbulence characterization through image motion and scintillation of passive targets -1211848-, enmarcada en el Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) de la Agencia Nacional de Investigación y Desarrollo (ANID) -ex CONICYT- comprende un trabajo por cuatro años de investigación. Sobre este proyecto, el docente nos comentó lo siguiente:
¿En qué contexto se da esta investigación? ¿Cómo se originó la idea?
Darío (D): Se trata de algo que ya vengo estudiando desde hace un tiempo. Es un sistema que un colega mío planteó, y que permite recolectar información de la turbulencia, observando una matriz de LEDs distribuidos en columnas. Es un concepto simple, de observar cada punto individual junto a sus cercanos para obtener información. Ahora, la técnica está en observar un objeto que está muy, muy lejos.
Sucede que tiene varios defectos, por ejemplo, en la detección de anisotropía. No la detecta claramente. Sabe que hay, pero no puede cuantificarla. Otra problemática que surge es que no considera otro tipo de regiones que no sean recintos amplios o grandes distancias entre la fuente de luz y el observador. A raíz de esto, hicimos un experimento hace dos años. Ahí nos dimos cuenta de que los modelos numéricos originales no podían aplicarse en laboratorio, porque la propagación es muy corta, por lo que era necesario evaluarlos. Entonces, con un estudiante de postgrado, trabajamos en esa situación. En paralelo, otro alumno está viendo fenómenos de centelleo o fluctuaciones de irradiancia de objetos de gran tamaño. Pensando en ambos problemas, al tener un poco de similitud, se me ocurrió elaborar una técnica híbrida que permita observar ambas situaciones de forma simultánea, de forma de adquirir aún más información. Se propone entonces, que esto se aplique en el domo de un observatorio, no solo en los telescopios tradicionales, sino también pensando en la llegada de los ELT, telescopios de gran tamaño en los próximos años. Recordemos que estos espacios afectan la observación…
La idea es introducir un sistema que pueda funcionar 24/7. De ser aplicado apropiadamente, lo que sugerimos es en vez de emplear fuentes de luz artificial -LEDs-, que se observen algunos blancos durante la noche, considerando que sea una cantidad mínima de luz para que la cámara los detecte. Es el ideal, que el sistema funcione sin interferir la actividad del telescopio. Entonces, tener una plataforma que permite en todo momento decir cuál es el estado de la turbulencia al interior del domo. Es particularmente ambicioso, porque al disponer de poca luz, se debe definir cuál es la cámara apropiada. Otra novedad que tendría esta actualización de la técnica original sería que usaríamos dos cámaras para el arreglo, para poder localizar la turbulencia en el espacio. Esto abre el espacio para hacer telemetría. Lo que busca lograrse con CAOVA es mejorar la técnica original, al observar el mismo blanco con dos o más cámaras en el arreglo. El problema de ingeniería acá es, entonces, ver cómo trabajamos con el volumen de información que emanan ambas cámaras, para lo que tendremos que generar un sistema de IA que permita discriminar en esa muestra el material realmente disponible. Estamos hablando de imágenes de una gran resolución, y que se generan en gran cantidad por segundo.
¿Quiénes integrarán el equipo de trabajo? ¿cuál es el esquema de trabajo visualizado?
D: El profesor Vera participará como co-investigador, como también se sumarán estudiantes de postgrado que integran los laboratorios del Centro. Una parte de este primer semestre contempla ver cuál cámara es la mejor candidata para la realización del proyecto. Este mismo tiene una extensión de cuatro años. A grandes rasgos, en el primer año nos enfocamos en el modelo teórico, donde hay algunos incertezas que cubrir, como también validar nuestra propuesta con un solo blanco. Algo de ello está ya adelantado junto con el CAOVA. Para el segundo año viene el análisis y viene ya la integración del sistema de IA para que procese lo que le está llegando de las cámaras. Pensamos a finales de ese año, hacer una campaña, que es bien probable que se pueda hacer, con la situación sanitaria mucho más tranquila. Al tercer año se haría un trabajo experimental con más de un blanco para telemetría y tomografía. Con eso implementado, haríamos una o dos campañas en el VLT nuevamente. De ser exitoso, podríamos ya pensar en el cuarto año tener una versión funcional que esté operando en el VLT durante un par de semanas. Con tener dos campañas en el VLT, nos daremos por satisfechos con la realización de esta propuesta, lo que podría abrir una eventual colaboración con el Observatorio Europeo Austral.
¿A qué tipo de equipamiento y herramientas se debe recurrir en una investigación de este tipo?
D: Este proyecto se centra en la elaboración de hardware. Para lo que es la prueba de concepto, tenemos comprometidas dos cámaras de alta velocidad muy sensibles a la luz. Además, está considerada la compra de lentes, como de equipamiento optomecánico, que nos sirve para realizar montajes. Todo esto de una gran suma de dinero. Luego viene un dispositivo llamado digital mirror device, un arreglo de fibra óptica para realizar una transmisión rápida de datos con un termómetro de alta sensibilidad. Después también tenemos sistemas de control en forma de microcomputadoras, herramientas de servicio y alojamiento para nuestros datos. Un gran componente de este FONDECYT es apoyarnos en la compra de equipamiento especializado. Además de la infraestructura ya disponible, que, al menos en el laboratorio, provienen de ya cinco proyectos de este tipo ya ejecutados previamente.
Eventualmente, de concretar con éxito la investigación: ¿qué posibilidades abriría a futuro este proyecto?
D: Hay muchas. Estos sistemas, que son de sensado remoto y que se diseñan para calificar el estado de la turbulencia, funcionará como una estación metereológica al interior del domo, 24/7 todos los días. Lo que estás haciendo con este sistema, al estar midiendo la turbulencia en todo momento es tener información de otros fenómenos que pueden afectar las comunicaciones ópticas no necesariamente en entornos ligados a la astronomía, como podría ser el saber la concentración de vapor de agua en un bosque o en algún cultivo. Desde la perspectiva del impacto ambiental, permitiría, en una versión más económica claro, saber, siguiendo el ejemplo anterior, cuánta agua necesitas para realizar un cultivo de manera óptima. En esa línea, para un sistema que apoye el monitoreo en contextos de agricultura, podría ser una idea bastante interesante de explorar, porque podrías distribuir mejor ese recurso.
Para concluir, ¿qué vínculo se puede establecer entre la inteligencia artificial y las problemáticas ligadas a la óptica, la física y la instrumentación? ¿por qué indagar en estas áreas?
D: Es un tema en discusión. Creo que la IA, para estos problemas que demandan grandes volúmenes de información, los cuales sabemos analizar pero que necesitan de un individuo preparado por grandes porciones de tiempo, es muy eficiente. A pesar de la sofisticación que puede tener un científico preparado o un estudiante, en cuanto a tiempo, no sería eficaz. El tema es que, un sistema entrenado, puede apoyar esas tareas que pueden resultar engorrosas. Al sistema se le hace entender los parámetros con los cuales una persona hace una evaluación. Aprender del humano, luego de muchas pruebas. En todo lo que es sensado remoto, la gente de mi área está discutiendo sobre las posibilidades e intervenciones que la IA puede hacer en la recolección de datos, en este caso, para óptica.
Para conocer más sobre el Centro de Óptica Adaptiva de Valparaíso (CAOVA) y el laboratorio de optoelectrónica de la EIE, puede visitarse el sitio web oficial de cada uno.