Darío G. Pérez

Sobre mí

Recibí mi grado de Doctor en Física en la Universidad Nacional de La Plata (2003). Llegué a la Pontificia Universidad Católica de Valparaíso en Agosto de 2004. En el 2008 accedía a la jerarquía de Profesor Adjunto de este Instituto de Física, y luego en 2014 a la de Profesor Titular.

Desde mi llegada a Valparaíso he ganado diversos proyectos de investigación, fundado el Laboratorio de Óptica Atmosférica y Estadística (Atmospheric and Statistical Optics Laboratory, @SOL) y recientemente el Centro de Óptica Adaptiva de Valparaíso (CAOVa).

En este tiempo he publicado más de cincuenta publicaciones científicas. La universidad me ha reconocido con el Premio Excelencia en Investigación 2012 por ser uno de los científicos más productivos de la PUCV. Formo parte de dos claustros de doctorado: el Doctorado en Ciencias Físicas (consorcio PUCV-UTFSM) y el Doctorado en Ingeniería Eléctrica (PUCV).

Como académico siempre he estado comprometido con mi Universidad en diferentes lugares de gestión—Director del Instituto de Física, Director de Postgrado, Jefe de Carrera, y actualmente Secretario Académico. En todas las oportunidades que he tenido no he dejado de escribir sobre qué, cómo y porqué hacemos academia…

Reflexiones

Lo que enseño

Dónde me encuentran


Qué investigo

Imaging a dot array through turbulence: laboratory case

Qué me motiva

Ciencia Ficción y Conocimiento Científico

Ciencia (Ficción) - Medium
Science and Science Fiction share more than a word. This publication tries to untangle their historical interconnections // Ciencia y Ciencia Ficción comparten mucho más que una simple palabra. Esta publicación trata de desentrañar sus interconecciones historicas.
https://medium.com/science-and-fiction

Ciencia Colaborativa

#EclipseConCiencia en Chile fue nuestra primera incursión en la planificación y ejecución de un experimento colaborativo. Este pretendía aprovechar el Eclipse del 14 de diciembre 2020 para hacer convertir a cualquier poblador de las regiones de Los Ríos y La Araucanía de meros observadores pasivos en participantes activos de un experimento científico (fue dirigido particularmente a aquellos con interés en la Astronomía, Ingeniería y Física). Bajo ciertas condiciones controladas (que se indicaron en nuestra página web), estos participantes recolectarían datos valiosos sobre un fenómeno muy interesante pero increíblemente poco entendido que ocurre en nuestra propia atmósfera a baja altura—llamado coloquialmente como Cintas de Sombras.

La turbulencia a baja altura afectará el diseño y funcionamiento de los grandes telescopios, como el Extremely Large Telescope (ELT), y actualmente centra la atención de muchos cientificos del area. Es, en general , sumamente difícil de caracterizar, pero el eclipse del 14 de Diciembre ofrecía una oportunidad única de avanzar en esa dirección y aportar al desarrollo científico del país.

Eclipse con Ciencia
En estas primeras semanas (hasta el 25 de noviembre) nos concentraremos en el paso 1 y para ello hemos dispuesto de un breve instructivo para descargar-más detalles y videos tutoriales irán apareciendo en nuestras redes sociales. Luego, pasaremos al paso 2 que requerirá del uso de FiLMiC PRO y una serie de consideraciones que aparecerán también aquí.
https://fis.ucv.cl/eclipse-2020/

Trayectoria

Proyectos de Investigación

Publicaciones

[1] F. Olivares, G. Funes, and D. G. Perez, "High frequency multifractality in return intervals from fading induced by turbulence," Fractals 29, 2150049 (2021).

[2] F. Olivares, M. Zanin, L. Zunino, and D. G. Pérez, “Contrasting chaotic with stochastic dynamics via ordinal transition networks,” Chaos An Interdiscip. J. Nonlinear Sci. 30(6), 063101 (2020) [doi:10.1063/1.5142500].

[3] F. Olivares, L. Zunino, and D. G. Pérez, “Revisiting the decay of missing ordinal patterns in long-term correlated time series,” Phys. A Stat. Mech. its Appl. 534, 122100 (2019) [doi:10.1016/j.physa.2019.122100].

[4] F. Olivares, G. Funes, and D. G. Pérez, “Turbulence-induced power drops as extreme events,” Opt. Lasers Eng. 116, 111–115 (2019) [doi:10.1016/j.optlaseng.2019.01.003].

[5] F. Olivares, L. Zunino, M. C. Soriano, and D. G. Pérez, “Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics,” Phys. Rev. E 100(4), 042215 (2019) [doi:10.1103/PhysRevE.100.042215].

[6] F. Olivares, L. Zunino, D. Gulich, D. G. Pérez, and O. A. Rosso, “Multiscale permutation entropy analysis of laser beam wandering in isotropic turbulence,” Phys. Rev. E 96(4), 042207 (2017) [doi:10.1103/PhysRevE.96.042207].

[7] D. G. Perez, F. Olivares, E. Peters, L. Nuñez, and G. Funes, “Scintillation of Extended Objects in Anisotropic Turbulence,” in Imaging Appl. Opt. 2017 (3D, AIO, COSI, IS, MATH, pcAOP), p. PW2D.5, OSA, Washington, D.C. (2017) [doi:10.1364/PCAOP.2017.PW2D.5].

[8] E. Peters, P. Clemente, E. Salvador-Balaguer, E. Tajahuerce, P. Andrés, D. G. Pérez, and J. Lancis, “Real-time acquisition of complex optical fields by binary amplitude modulation,” Opt. Lett. 42(10), 2030 (2017) [doi:10.1364/OL.42.002030].

[9] D. G. Perez, G. Funes, F. Olivares, C. Weinberger, Y. Carrasco, and L. Nuñez, “Laboratory Synthesis of Atmospheric Anisotropic Turbulence,” in Propag. Through Charact. Atmos. Ocean. Phenom., p. Tu1A.5, OSA, Washington, D.C. (2016) [doi:10.1364/PCAOP.2016.Tu1A.5].

[10] A. Poisson, A. Fernandez, D. G. Perez, R. Barille, and J.-C. Dupont, “Thin laser beam wandering and intensity fluctuations method for evapotranspiration measurement,” Opt. Laser Technol. 80, 33–40 (2016) [doi:10.1016/j.optlastec.2015.12.017].

[11] E. F. Mosso, N. Bolognini, and D. G. Pérez, “Single-random phase encoding architecture using a focus tunable lens,” J. Opt. 18(2), 025701 (2016) [doi:10.1088/2040-8978/18/2/025701].

[12] G. Funes, F. Olivares, C. G. Weinberger, Y. D. Carrasco, L. Nuñez, and D. G. Pérez, “Synthesis of anisotropic optical turbulence at the laboratory,” Opt. Lett. 41(24), 5696 (2016) [doi:10.1364/OL.41.005696].

[13] D. G. Pérez and G. Funes, “On a quasi-wavelet model of refractive index fluctuations due to atmospheric turbulence,” Opt. Express 23(25), 31627 (2015) [doi:10.1364/OE.23.031627].

[14] D. Gulich, G. Funes, D. Pérez, and L. Zunino, “Estimation of $C_n^2$ based on scintillation of fixed targets imaged through atmospheric turbulence,” Opt. Lett. 40(23), 5642 (2015) [doi:10.1364/OL.40.005642].

[15] F. Mosso, N. Bolognini, and D. G. Pérez, “Experimental optical encryption system based on a single-lens imaging architecture combined with a phase retrieval algorithm,” J. Opt. 17(6), 065702 (2015) [doi:10.1088/2040-8978/17/6/065702].

[16] L. Zunino, D. Gulich, G. Funes, and D. G. Pérez, “Turbulence-induced persistence in laser beam wandering,” Opt. Lett. 40(13), 3145 (2015) [doi:10.1364/OL.40.003145].

[17] F. Mosso, E. Peters, and D. G. Pérez, “Complex wavefront reconstruction from multiple-image planes produced by a focus tunable lens,” Opt. Lett. 40(20), 4623 (2015) [doi:10.1364/OL.40.004623].

[18] D. G. Pérez, G. Funes, F. Olivares, C. G. Weinberger, Y. D. Carrasco, and L. Nuñez, “Laboratory synthesis of atmospheric anisotropic turbulence,” in Opt. InfoBase Conf. Pap. (2014).

[19] D. G. Pérez, R. Barillé, Y. Morille, S. Zielińska, and E. Ortyl, “Multifractal characteristics of optical turbulence measured through a single beam holographic process,” Opt. Express 22(16), 19538–19545 (2014) [doi:10.1364/OE.22.019538].

[20] D. G. Perez, G. Funes, D. G. Pérez, and G. Funes, “A Quasi-Wavelet Model For The Turbulent Refractive Index,” in Imaging Appl. Opt. 2014, p. PM2E.4, OSA, Washington, D.C. (2014) [doi:10.1364/PCDVT.2014.PM2E.4].

[21] D. Gulich, L. Zunino, D. Pérez, and M. Garavaglia, “Multifractality and the effect of turbulence on the chaotic dynamics of a hene laser,” 2013 [doi:10.1117/12.2023708].

[22] F. Mosso, E. Peters, N. Bolognini, M. Tebaldi, R. Torroba, and D. G. Pérez, “Experimental imaging coding system using three-dimensional subjective speckle structures,” J. Opt. 15(12), 125403 (2013) [doi:10.1088/2040-8978/15/12/125403].

[23] R. Barillé, D. G. Pérez, Y. Morille, S. Zieli\’nska, and E. Ortyl, “Simple turbulence measurements with azopolymer thin films,” Opt. Lett. 38(7), 1128–1130 (2013).

[24] G. Funes, E. Figueroa, D. Gulich, L. Zunino, and D. G. Pérez, “Characterizing inertial and convective optical turbulence by detrended fluctuation analysis,” Proc. SPIE 8890, A. Comeron, E. I. Kassianov, K. Schäfer, K. Stein, and J. D. Gonglewski, Eds., 889016 (2013) [doi:10.1117/12.2028698].

[25] J. Leguá, G. Plaza, D. Pérez, and A. Arkhipkin, “Otolith shape analysis as a tool for stock identification of the southern blue whiting, Micromesistius australis,” Lat. Am. J. Aquat. Res. 41(3), 479 (2013) [doi:103856/vol41-issue3-fulltext-11].

[26] G. Funes, Á. Fernández, D. G. Pérez, L. Zunino, and E. Serrano, “Estimating the optimal sampling rate using wavelet transform: an application to optical turbulence,” Opt. Express 21(13), 15230 (2013) [doi:10.1364/OE.21.015230].

[27] D. G. Pérez, Ángel Férnandez, G. Funes, D. D. Gulich, L. Zunino, D. G. Pérez, and A. Férnandez, “Retrieving atmospheric turbulence features from differential laser tracking motion data,” in Proc. SPIE 8535, K. Stein and J. Gonglewski, Eds., pp. 853508-853508–853511 (2012) [doi:10.1117/12.974652].

[28] D. G. Pérez and G. Funes, “Beam wandering statistics of twin thin laser beam propagation under generalized atmospheric conditions,” Opt. Express 20(25), 27766 (2012) [doi:10.1364/OE.20.027766].

[29] L. Zunino, B. M. Tabak, F. Serinaldi, M. Zanin, D. G. Pérez, and O. A. Rosso, “Commodity predictability analysis with a permutation information theory approach,” Phys. A Stat. Mech. its Appl. 390(5), 876–890 (2011) [doi:10.1016/j.physa.2010.11.020].

[30] L. Zunino, M. Zanin, B. M. Tabak, D. G. Pérez, and O. A. Rosso, “Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency” (2010) [doi:10.1016/j.physa.2010.01.007].

[31] L. Zunino, M. C. Soriano, A. Figliola, D. G. Pérez, M. Garavaglia, C. R. Mirasso, and O. A. Rosso, “Performance of encryption schemes in chaotic optical communication: A multifractal approach” (2009) [doi:10.1016/j.optcom.2009.08.047].

[32] L. Zunino, A. Figliola, B. M. Tabake, D. G. Perez, M. Garavaglia, and O. A. Rosso, “Multifractal structure in Latin-American market indices,” Chaos, Solitons & Fractals 41(5), 2331–2340 (2009).

[33] D. G. Pérez, L. Zunino, D. Gulich, G. Funes, and M. Garavaglia, “Turbulence characterization by studying laser beam wandering in a differential tracking motion setup,” Proc. SPIE 7476, 74760D (2009).

[34] L. Zunino, M. Zanin, B. M. Tabak, D. G. Perez, and O. A. Rosso, “Forbidden patterns, permutation entropy and stock market inefficiency,” Physica A 388, 2854–2864 (2009).

[35] L. Zunino, D. G. Pérez, A. Kowalski, M. T. Martín, M. Garavaglia, A. Plastino, and O. A. Rosso, “Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy” (2008) [doi:10.1016/j.physa.2008.07.004].

[36] L. Zunino, D. G. Pérez, M. Garavaglia, N. U. Wetter, and J. Frejlich, “Ten Years of Research on Light Propagation through a Turbulent Atmosphere,” in AIP Conf. Proc. 992, pp. 15–20, AIP (2008) [doi:10.1063/1.2926849].

[37] D. G. Pérez and L. Zunino, “Generalized wave-front phase for non-Kolmogorov turbulence,” Opt. Lett. 33(6), 572–574 (2008).

[38] L. Zunino, D. G. Pérez, M. T. Martín, M. Garavaglia, A. Plastino, and O. A. Rosso, “Permutation entropy of fractional Brownian motion and fractional Gaussian noise” (2008) [doi:10.1016/j.physleta.2008.05.026].

[39] L. Zunino, B. M. Tabak, A. Figliola, D. G. Pérez, M. Garavaglia, and O. A. Rosso, “A multifractal approach for stock market inefficiency” (2008) [doi:10.1016/j.physa.2008.08.028].

[40] D. G. Perez and L. Zunino, “Inner- and outer-scales of turbulent wavefront phase defined through the lens of multi-scale Levy fractional Brownian motion processes,” Proc. SPIE 71080, A. Kohnle, K. Stein, and J. D. Gonglewski, Eds., 71080O (2008) [doi:10.1117/12.800155].

[41] L. Zunino, B. M. Tabak, D. G. Perez, M. Garavaglia, and O. A. Rosso, “Inefficiency in Latin-American market indices,” Eur. Phys. J. B 60(1), 111–121 (2007).

[42] L. Zunino, D. G. Pérez, M. T. Martín, A. Plastino, M. Garavaglia, and O. A. Rosso, “Characterization of Gaussian self-similar stochastic processes using wavelet-based informational tools” (2007) Phys. Rev. E 75, 021115 [doi:10.1103/PhysRevE.75.021115].

[43] D. G. Pérez, L. Zunino, M. T. Martín, M. Garavaglia, A. Plastino, and O. A. Rosso, “Model-free stochastic processes studied with {q}-wavelet-based informational tools,” Phys. Lett. A 364(3--4), 259–266 (2007).

[44] D. D. Gulich, G. Funes, L. Zunino, D. G. Pérez, and M. Garavaglia, “Angle-of-arrival variance’s dependence on the aperture size for indoor convective turbulence,” Opt. Comm. 277, 241–246 (2007).

[45] O. A. Rosso, L. Zunino, D. G. Pérez, A. Figliola, H. A. Larrondo, M. Garavaglia, M. T. Martín, and A. Plastino, “Extracting features of Gaussian self-similar stochastic processes via the Bandt-Pompe approach” Phys. Rev. E 76, 061114 (2007) [doi:10.1103/PhysRevE.76.061114].

[46] D. G. Pérez, L. Zunino, and M. Garavaglia, “The Lévy fractional Brownian motion family as a new paradigm in the modeling of turbulent wave-front phase,” 2007 [doi:10.1117/12.734391].

[47] G. Funes, D. D. Gulich, L. Zunino, D. G. Pérez, M. Garavaglia, and D. G. Pérez, “Behavior of the laser beam wandering variance with the turbulent path length,” Opt. Comm. 272(2), 476–479 (2007).

[48] L. Zunino, D. G. Pérez, M. Garavaglia, and O. A. Rosso, “Wavelet entropy of stochastic processes” (2007) [doi:10.1016/j.physa.2006.12.057].

[49] D. G. Pérez, L. Zunino, M. Garavaglia, and O. A. Rosso, “Wavelet entropy and fractional Brownian motion time series,” Physica A 365, 282–288 (2006) [doi:10.1016/j.physa.2005.09.060].

[50] D. Gulich, G. Funes, L. Zunino, D. G. Pérez, and M. Garavaglia, “Angle-of-arrival variance behavior and scale filtering in indoor turbulence,” Proc. SPIE 65220, G. G. Matvienko and V. A. Banakh, Eds., 65220L-65220L – 7 (2006) [doi:10.1117/12.723049].

[51] L. Zunino, D. G. Pérez, and M. Garavaglia, “Seeing within the fractional Brownian motion model for the turbulent wave-front phase,” 2006 [doi:10.1117/12.723045].

[52] L. Zunino, D. G. Pérez, M. Garavaglia, and O. A. Rosso, “Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform: Dynamic study” (2006) [doi:10.1016/j.physa.2005.09.054].

[53] D. G. Pérez, L. Zunino, and M. Garavaglia, “Fractal dimension of turbulent laser beam wandering,” Proc. SPIE 5622, 368–372 (2004).

[54] M. Garavaglia, D. G. Pérez, and L. Zunino, “A fractional Brownian motion model for turbulent wave-front phase,” 2004 Asia-Pacific Radio Sci. Conf. - Proc. (2004).

[55] L. Zunino, D. G. Pérez, M. Garavaglia, and O. A. Rosso, “Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform” (2004) [doi:10.1142/S0218348X04002471].

[56] D. G. Pérez, L. Zunino, and M. Garavaglia, “Modeling turbulent wave-front phase as a fractional Brownian motion: a new approach,” J. Opt. Soc. Am. A 21(10), 1962 (2004) [doi:10.1364/JOSAA.21.001962].

[57] D. G. Pérez, L. Zunino, M. Garavaglia, and D. G. Pérez, “A fractional Brownian motion model for the turbulent refractive index in lightwave propagation,” Opt. Comm. 242, 57–63 (2004) [doi:10.1016/j.optcom.2004.08.007].

[58] D. G. Pérez and M. Garavaglia, “Fractional {B}rownian motion property of the atmospheric refraction index,” Proc. SPIE 4419, 503–505 (2001).

[59] D. G. Pérez and M. Garavaglia, “Intensity distribution behavior of self-image systems into turbulent media,” J. Opt. Soc. Am. A 16(4), 916 (1999) [doi:10.1364/JOSAA.16.000916].