1. Ley de potencia

 \mathbf{a} / Para verificar que el flujo es incompresible, debemos verificar que $\nabla \cdot \mathbf{u} = 0$, pero como el flujo es irrotacional, sabemos que $\mathbf{u} = \nabla \phi$, lo que implica $\Delta \phi = 0$. Por lo tanto, si $\Delta \phi = 0$, el flujo es incompressible

$$\Delta \phi = \frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2}$$
$$= n(n-1)Ar^{n-2} \cos(n\theta) + nAr^{n-2} \cos(n\theta) - n^2 Ar^{n-2} \cos(n\theta) = 0$$

b/ Para obtener la función de flujo, obteneremos primero la velocidad

$$u_r = \frac{\partial \phi}{\partial r} = nAr^{n-1}\cos(n\theta)$$
$$u_\theta = \frac{1}{r}\frac{\partial \phi}{\partial \theta} = -nAr^{n-1}\sin(n\theta)$$

De lo cual podemos obtener la función de flujo ya que

$$u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}, \quad u_\theta = -\frac{\partial \psi}{\partial r}$$

De la primera ecuación, obtenemos

$$\psi(r,\theta) = Ar^n \sin(n\theta) + F(r)$$

y de la segunda ecuación, obtenemos F'(r) = 0, lo que implica que F es constante y por lo tanto lo podemos fijar a cero. En conclusión, tenemos

$$\psi(r,\theta) = Ar^n \sin(n\theta)$$

 \mathbf{c} / Para n = 1/2, tenemos

$$\psi(r,\theta) = A\sqrt{r}\sin\frac{\theta}{2}$$

Por lo tanto $\psi=0$ es decir la posición del sólido se encuentra cuando $\theta/2$ es nulo o π es decir cuando $\theta=0$ o $\theta=2\pi$, lo que corresponde al mismo lugar. Por lo tanto, el eje donde $\theta=0$ es la posición del sólido, lo que corresponde en coordenadas cartesianas al semi-eje $y=0, x\geq 0$

Para n = 2/3, tenemos

$$\psi(r,\theta) = Ar^{2/3}\sin\frac{2\theta}{3}$$

Por lo tanto $\psi = 0$ es decir la posición del sólido se encuentra cuando $2\theta/3$ es nulo o π es decir cuando $\theta = 0$ o $\theta = 3\pi/2$. Por lo tanto, el sólido, se encuentra entre estos 2 ceros, es decir en la zona x > 0, y < 0.