Ayudantía 07

1. Paramagnetismo clásico

Queremos estudiar el paramegnetismo pero en la aproximación clásica. Por lo tanto debemos calcular la función de partición de un sistema con la energía

$$E = -\sum_{i=1}^{N} \vec{\mu}_i \cdot \vec{B}$$

Obtener el momento magnético medio $\langle \vec{\mu} \rangle$, la susceptibilidad y la energía libre del sistema.

2. Principio de Arquímedes

Queremos obtener una derivación microscópica del principio de Arquímedes.

Consideremos un cilindro recto de base $L \times L$ y altura arbitrariamente grande ocupado por un gas perfecto formado por N moléculas sujetas únicamente a su peso mg. En este tipo de problemas, la definición correcta del límite termodinámico es $N/L^2 = n_1$, fijado cuando $N \to \infty$ y $L \to \infty$.

1. Demuestre que la probabilidad de que una molécula se encuentre a una altura comprendida entre z y z+dz es proporcional a $e^{-\beta mgz}dz$. De aquí se deduce la ecuación barométrica de la densidad volumétrica:

$$n(z) = n(0)e^{-\beta mgz}$$

Utilizando la conservación del número de molécula, demuestre que $n_1\beta mg = n(0)$

- 2. Calcular la función de partición canónica Z_{qp} del sistema, luego su energía libre F_{qp} .
- 3. Colocamos ahora dentro del cilindro una partícula macroscópica esférica muy pequeña de radio a, impenetrable para las moléculas del gas perfecto. La imaginamos fija a la altura z_0 . Calcular la nueva función de partición canónica Z del gas; mostrar que Z es la diferencia de dos integrales con un término dominante y un término corrector. Utilizando una aproximación para este último, mostrar que la energía libre puede escribirse como

$$F = F_{qp} + f(z_0)$$

4. Calcular $\frac{\partial F}{\partial z_0}$ (que tiene las dimensiones de una fuerza). ¿De qué tipo de fuerza estamos hablando?