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Abstract

Compaction quality control in earthworks and pavements still relies mainly on density-
based acceptance referenced to laboratory Proctor tests, which are costly, time-consuming,
and spatially sparse. Lightweight dynamic cone penetrometer (LDCP) provides rapid
indices, such as qd0 and qd1, yet acceptance thresholds commonly depend on ad hoc, site-
specific calibrations. This study develops and validates a supervised machine learning
framework that estimates qd0, qd1, and Zc directly from readily available soil descriptors
(gradation, plasticity/activity, moisture/state variables, and GTR class) using a multi-
campaign dataset of n = 360 observations. While the framework does not remove the need
for the standard soil characterization performed during design (e.g., W, γd,field, and RCSPC),
it reduces reliance on additional LDCP calibration campaigns to obtain device-specific
reference curves. Models compared under a unified pipeline include regularized linear
baselines, support vector regression, Random Forest, XGBoost, and a compact multilayer
perceptron (MLP). The evaluation used a fixed 80/20 train–test split with 5-fold cross-
validation on the training set and multiple error metrics (R2, RMSE, MAE, and MAPE).
Interpretability combined SHAP with permutation importance, 1D partial dependence
(PDP), and accumulated local effects (ALE); calibration diagnostics and split-conformal
prediction intervals connected the predictions to QA/QC decisions. A naïve GTR-average
baseline was added for reference. Computation was lightweight. On the test set, the
MLP attained the best accuracy for qd1 (R2 = 0.794, RMSE = 5.866), with XGBoost close
behind (R2 = 0.773, RMSE = 6.155). Paired bootstrap contrasts with Holm correction
indicated that the MLP–XGBoost difference was not statistically significant. Explana-
tions consistently highlighted density- and moisture-related variables (γd,field, RCSPC, and
W) as dominant, with gradation/plasticity contributing second-order adjustments; these
attributions are model-based and associational rather than causal. The results support
interpretable, computationally efficient surrogates of LDCP indices that can complement
density-based acceptance and enable risk-aware QA/QC via conformal prediction intervals.
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1. Introduction
Compaction quality control is a cornerstone of geotechnical construction because the

degree of densification governs the stiffness, deformation, and load-carrying capacity of
earth structures and pavements. In current practice, quality assurance relies primarily
on density-based acceptance relative to laboratory Proctor references—maximum dry
density (γd max) and optimum moisture content (Wopt)—obtained under Standard Proctor
Compaction (SPC) or Modified Proctor Compaction (MPC); test field verification is typically
performed with spot tests, such as the sand cone method (ASTM D1556/D1556M) and
the nuclear gauge (ASTM D6938) [1–5]. These procedures are robust and traceable but are
labor-intensive, time-consuming, and provide sparse spatial coverage, leaving uncertainty
between test points and delaying feedback to the field. Throughout this paper, we also
refer to the dynamic cone penetrometer (DCP; ASTM D6951), the lightweight deflectometer
(LWD; ASTM E2583/E2835), the static plate load test (EV1/EV2; DIN 18134), and the
lightweight/instrumented dynamic penetrometer (LDCP; EN ISO 22476-2) [6–10].

Dynamic cone penetrometers have gained traction as rapid, in situ tools that profile
resistance with depth and can be deployed at high sampling densities. In particular,
lightweight/instrumented devices (often referred to as light dynamic cone penetrometer,
LDCP; e.g., Panda) report the dynamic cone resistance qd and enable the definition of
near-surface and stable-depth indices (qd0 and qd1, respectively [10–13]). These indices
(qd0/qd1) are specific to instrumented LDPs, such as LDCP, and are not universally reported
by other dynamic penetrometers like the ASTM DCP, which typically yields a penetration
index (DPI). The qd0/qd1 indices act as practical proxies for strength/stiffness affected by
dry density and (W). However, acceptance thresholds in many specifications still rely on
ad hoc, site-specific correlations, or on test-strip calibrations, which may not generalize
across soil types, gradations, or moisture states [6,10].

Research gap.Despite the growing field use of LDPs for compaction quality control
(QC)/quality assurance (QA), there is no general predictive framework that maps readily
available soil descriptors—particle size distribution (PSD), Atterberg limits (AL), soil
class (GTR or USCS), and moisture state—directly to qd0 or qd1. Existing relationships
tend to be material- and moisture-specific, limiting transferability and hindering real-
time decision support. Recent studies have examined the use of machine learning to
predict penetration-related indices. For example, Farshbaf Aghajani and Diznab (2023)
developed an artificial neural network to estimate the Dynamic Cone Penetration Index
(DCPI) from soil properties, such as the moisture content, dry density, plasticity index,
and fines content—identifying moisture and PI as the most influential predictors [14]. Their
model outperformed classical regressions derived from limited datasets, but it remained
focused on the ASTM DCP rather than instrumented LDCP indices. This highlights the
absence of generalizable ML frameworks for qd0 and qd1, which integrate density and
moisture effects.

Opportunity with machine learning (ML). In geotechnical engineering, ML models
have successfully predicted compaction-related properties—such as maximum dry density
and optimum moisture content under SPC/MPC, California Bearing Ratio (CBR), and re-
silient modulus—from basic index parameters, capturing nonlinear interactions beyond
traditional regressions [15–18]. Recent advances further illustrate this potential. Ensemble
and neural models have been applied to predict Proctor parameters in expansive soils
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with high accuracy [16,19], while other studies have modeled strength indices and resilient
moduli under various compaction and treatment conditions using ML approaches [20].
These works demonstrate that ML can capture complex soil–property relationships across a
wide range of materials and conditions. In parallel, innovations in instrumented penetrom-
etry, such as integrating IDCP with time-domain reflectometry to simultaneously measure
moisture and resistance, point to richer datasets that could be leveraged by ML models for
compaction control [21]. A common criticism is the “black-box” nature of such models;
explainable AI (XAI) methods, such as SHAP, provide global and local attributions that
align predictions with soil mechanics expectations (e.g., W reducing resistance and higher
density increasing it), thereby improving trust and auditability [22–24].

Objective and contributions. This paper proposes and validates a supervised ML
framework to estimate the initial dynamic cone resistance (qd0), stabilized dynamic cone
resistance (qd1), and critical depth (Zc) from soil properties for compaction control with
LDCP. We compile a dataset that couples field penetrometer results with laboratory char-
acterization; build and compare several ML models; and analyze interpretability with
SHAP to identify the dominant physical drivers and to verify consistency with compaction
mechanisms. The framework is intended to (i) deliver accurate predictions usable for
QA/QC and to (ii) provide physically meaningful explanations that facilitate specification
uptake. A key motivation is that current practice with LDCP requires laboratory or field
test calibrations to define reference curves, which are specific to the material and site. This
study addresses that limitation by providing direct predictions of qd0, qd1, and Zc from
soil descriptors, reducing dependence on calibration campaigns and enabling more agile
decision making in the field.

Paper organization. Section 2 reviews compaction control methods and related work.
Section 3 details the database and variables (see Section 3.1), the supervised learning models,
and the evaluation pipeline. Section 4 presents the comparative performance (Section 4.1),
SHAP-based interpretations (Section 4.3), and the statistical validation. The paper closes
with practical implications and conclusions in Section 5.

2. Compaction Control and Related Work
2.1. Importance of Control

Compaction control is fundamental in earthworks, embankments, trench backfill-
ing, and road layers to ensure adequate stiffness and stability of the support system [25].
Properly compacted layers sustain design performance over service life; inadequate com-
paction densifies under traffic, producing differential settlements, rutting, and premature
distress [26,27]. These defects affect safety and entail unplanned maintenance expendi-
tures [28]. In urban trenches, insufficient backfill compaction leads to surface depressions
and reduced durability, reinforcing the need for systematic QA/QC [1,29].

Spot tests (density, plate, LWD, and DCP/LDCP) provide point-wise evidence with
limited spatial coverage, whereas intelligent compaction (IC) offers continuous mapping
but requires on-site calibration. The moisture state materially influences stiffness and pene-
tration indices, even at similar dry density, so acceptance thresholds are best interpreted
within a W bracket around Wopt. Combining IC with targeted spot verification (density
and stiffness or penetration) mitigates both coverage and bias. A concise comparison of
principles, outputs, depths, and typical uses across methods is provided in Table 1.
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Table 1. Summary of compaction control methods.

Method Principle Primary Output Effective
Depth Typical Use and Notes

Lab Proctor
(SPC/MPC)

Compaction in mold
with standardized
energy; locate peak dry
density at Wopt.

γd max, wopt (Wopt)
Sample (mold
∼10–15 cm)

Benchmark for relative
compaction; acceptance
as % of γd max. ASTM
D698/D1557 [1,2].

Sand cone/water
replacement

Excavate small hole;
determine hole volume
by sand or
water/balloon fill.

γd,field, W ∼0.15–0.30 m

In situ density reference;
accurate and direct.
Sand cone per ASTM
D1556 [4].
Rubber–balloon (ASTM
D2167) withdrawn
in 2024.

Drive cylinder (core
cutter)

Steel cylinder-driven,
trimmed, weighed. γt (wet), γd,field, W ∼0.15 m

Useful in cohesive/soft
soils; potential volume
error if the
sample crumbles.

Nuclear gauge

γ–ray backscatter and
neutron moderation to
infer density and
moisture.

γt (wet density), W
Backscatter
∼0.15 m; direct
to ∼0.30 m

Rapid, non-destructive;
requires licensing,
on-site calibration,
and project-specific
correlation [5].

Plate load (EV1/EV2)
Static loading of rigid
plate; measure
load–deflection.

EV1, EV2 (MPa);
EV2/EV1

≈1–2 plate
diameters
(0.3–0.6 m)

Direct performance
metric; roadbed
acceptance with EV
thresholds and EV2/EV1
ratio [9].

Lightweight
deflectometer (LWD)

Drop weight on plate;
record peak deflection;
back-calculate modulus.

ELWD (MPa) ∼0.10–0.20 m

Fast stiffness control of
each lift; correlates with
plate test; sensitive to
moisture/stress [7,8].

Falling weight
deflectometer (FWD)

Higher drop loads and
sensor array to fit
deflection basin.

Layer modulus
(back-calculated) ∼1–1.5 m

Pavement evaluation;
occasional use for
overall support on
subgrade/base; requires
expertise/equipment.

Dynamic cone
penetrometer (DCP)

Standardized drops
drive a cone; read
penetration per blow.

DPI (mm/blow) or
blows/mm;
sometimes qd

∼0–0.8 m (to
∼1.5 m with
rods)

QA of compacted layers;
correlations with
CBR/resilient modulus;
sensitive to moisture
and coarse particles [6].

Light dynamic
penetrometers (LDCP)

Instrumented
variable-energy cone
(e.g., LDCP/Panda);
continuous qd profile.

qd(z); indices qd0,
qd1, and Zc

QC: ∼0–1.2 m;
QA: to ∼3 m
(with rods)

EN ISO 22476-2
(DPL/DPM/DPH);
energy normalization
and device procedures;
high repeatability; used
in this study [10].

Intelligent compaction
(IC)

Vibratory roller with
accelerometer & GNSS;
infer near-surface
stiffness continuously.

ICMV
(dimensionless
index)

∼0.3–0.5 m
(drum
influence)

100% coverage for
uniformity/process
control; project-specific
calibration against spot
tests (density, LWD, and
DCP) [30,31].

2.2. Methods of Control

(i) Laboratory compaction references.

Benchmarks for compaction are established with laboratory Proctor tests. Standard
Proctor (ASTM D698) and Modified Proctor (ASTM D1557) compact soil at specified
energies to determine (γd max) and (Wopt) [1–3,32,33]. Fine-grained soils typically reach
lower γd max at higher Wopt, whereas coarse-grained fills tend to achieve higher densities at
lower water contents. Specifications commonly require a field relative compaction (in situ
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dry density over laboratory γd max) of 90–100% (often 95%), assuming compaction near
Wopt. Relative compaction with respect to the Standard (SPC) or Modified (MPC) Proctor is
denoted RCX and is defined as

RCX(%) = 100 ×
γd,field

X γd max
, X ∈ {SPC, MPC}, (1)

where Xγd max is the laboratory maximum dry density obtained under the corresponding
Proctor energy. Limitations arise because standardized lab energies may not capture
project-specific field procedures, so field verification remains necessary.

(ii) In situ methods.

γd,field is measured at selected locations and compared to the laboratory γd max. Spot
density tests interrogate one lift and small areas, so low test frequency may miss weak
zones, yet they remain primary acceptance tools in many specifications.

(a) Sand cone. The sand cone method (ASTM D1556/D1556M) determines the test hole
volume by sand replacement, enabling γd,field and W; the current edition is 2024 [4].

(b) Rubber-balloon method. The rubber-balloon method (ASTM D2167) determines
volume by fluid displacement; the latest published edition is 2015 and the method
was withdrawn in 2024.

(c) Nuclear gauge. The nuclear gauge (ASTM D6938) estimates the field density, W
γ-ray backscatter, and neutron moderation; it is rapid, but requires licensing and
calibration [5].

(d) Stiffness and deflection methods. Because performance depends on the stiffness,
modulus-based control is widely used. The static plate load test (DIN 18134) yields
EV1/EV2 from load–settlement curves and is suited to the acceptance of subgrades
and unbound layers, albeit with higher logistics [9]. Portable devices, such as
the lightweight deflectometer (LWD), apply an impulse to a loading plate and
back-calculate an elastic modulus ELWD; current practices follow ASTM E2583
(LWD/PFWD) and ASTM E2835 (portable impulse plate) [7,8]. Correlations with plate
tests, which are used in control QA, have been widely reported [31,34]. The falling
weight deflectometer (FWD) evaluates deeper support but is less common for routine
layer-by-layer control. Deflection-based criteria generally require local calibration and
W normalization.

(e) Dynamic penetrometer tests.
(e.1) Lightweight dynamic penetrometers with variable energy (LDCP or Panda). LDCP

(Pénétromètre Autonome Numérique Dynamique Assisté par Ordinateur) is a
portable testing device weighing roughly 20 kg that has been widely used to evaluate
soil compaction in situ under variable energy conditions [35]. The system consists of
a 2 kg hammer that repeatedly strikes a rod train of 14 mm in diameter, which can
be fitted with interchangeable conical tips of either 2 or 4 cm2 [35–37]. Each impact
produces a stress wave that travels down the rod, and the resulting attenuation is
recorded electronically. From this signal, two quantities are obtained in real time:
the dynamic tip resistance qd (expressed in MPa) and the corresponding penetration
depth (in mm). Depending on the testing mode, the LDCP can typically reach depths
of up to 1.5 m for QC investigations, or as much as 6 m when applied to QA. Reported
values of qd can reach up to 30 MPa in dense granular materials [36].

A key requirement for the practical use of the LDCP is a calibration phase, which must
be carried out for each soil type under known laboratory or field conditions of density
and moisture content (W) [38]. The calibration process involves generating a reference
penetrogram in the qd–z domain. Figure 1(left) illustrates such a raw signal for a homoge-



Mathematics 2025, 13, 3359 6 of 34

neous granular soil, while Figure 1(right) highlights the three characteristic parameters
extracted from it [38]. These are as follows: (i) the initial resistance qd0, which reflects
near-surface conditions; (ii) the stabilized resistance qd1, representing deeper, steady-state
behavior; and (iii) the transition depth Zc, which marks the shift between the two regimes.
Together, these parameters define a reference curve for the soil, and this curve is later used
to establish acceptance and rejection thresholds for compaction control in situ.

Dynamic cone resistance (MPa)
D

e
p

th
 (

m
)

𝑞𝑑0 𝑞𝑑1

𝑍𝑐

Dynamic cone resistance (MPa)

D
e

p
th

 (
m

)

Figure 1. (left) The raw penetrometric signal in the qd–z space for a homogeneous granular medium.
(right) Characteristic parameters of the reference curve (qd0, qd1, and Zc).

At present, data processing and interpretation are handled through the online platform
Websprint. Websprint allows users to manage and compare reference curve databases [38],
apply acceptance or rejection criteria consistently, and produce standardized reports.
In practice, this digital environment has made it possible to use LDCP results in real
time, facilitating both on-site decision making and long-term documentation of compaction
performance.

(e.2) DCP-Standard penetrometer. The dynamic cone penetrometer, in its standard con-
figuration (DCP-Standard), is widely recognized as a practical tool for in situ control
compactation. The test is standardized under ASTM D6951 [6]. It employs an 8 kg
hammer dropped freely from a height of 575 mm onto a 60◦ conical tip with an area of
4.04 cm2. The primary outcome is the penetration index (DPI, expressed in mm/blow)
or, alternatively, its reciprocal (blows/mm).

These indices can be correlated with design and performance parameters, such as
the CBR index, the resilient modulus, and shear strength properties [39–41]. Because of
frictional effects along the rods, the penetration depth is typically limited to about 1 m.
The device is most suitable for soils or granular bases with a low percentage of particles
larger than 50 mm, where consistent penetration can be achieved.

The DCP-Standard is generally considered an economical and accessible method for
QA control. In practice, however, its use requires two operators: one to carry out the test
and another to record depth readings. Furthermore, results may show some dependence
on operator technique, highlighting the importance of consistent procedures in the field.

(e.3) DCP-Utility penetrometer.

The DCP-Utility is essentially a lighter version of the standard device, created specif-
ically for layer-by-layer QC. It works with a 2.3 kg hammer dropped from a height of
508 mm onto a 25◦ cone tip with an area of 4.84 cm2. The test records the average number
of blows, N, needed to penetrate increments of 83 mm. This tool is standardized under
ASTM D7380 [42] and is well-suited for fine soils, base layers, and shallow fills up to about
0.16 m in depth. Its main strengths are simplicity and low cost, making it a practical option
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for routine quality checks. However, its use becomes more limited in cemented soils or in
materials containing particles larger than 37 mm.

(e.4) PANDITO penetrometer. The PANDITO is a lightweight, constant-energy penetrome-
ter with a 5 kg hammer dropped from 610 mm onto a 90◦ conical tip of 2 cm2. Results
are expressed as the penetration index (DPI) or its inverse, corresponding to the num-
ber of blows required to advance 25.4 mm. The device reaches a maximum depth of
about 0.5 m and is mainly used for the QA of shallow compacted layers. Its results can
be related to CBR and the resilient modulus, but reliable use requires prior calibration
and field experience, as testing usually involves at least two operators.

(e.5) Dynamic cone penetrometer. The Dynamic Cone Penetration Test (DCPT) is a heavy
constant-energy device used for subsurface exploration and quality assurance at
greater depths. It consists of a 63.5 kg hammer dropped from 750 mm onto a 50 mm
rod train fitted with a 60◦ conical tip of 44.8 cm2. Test results are commonly reported
as the number of blows per 300 mm of penetration, which can also be converted into
a dynamic tip resistance qd. With a penetration capacity of up to 15 m, the DCPT
is widely applied to fine granular soils and is often used in liquefaction assessment.
While it provides robust information at depth, field operation is slower, more expen-
sive, and typically requires a larger crew; results may also be affected by hammer
efficiency and rod alignment [43–45].

(e.6) Comparative technical summary. The following tables provide a clear overview of the
most relevant differences among the dynamic penetrometers considered in this study:

i. Equipment (Table 2): The LDCP is the only device operating with variable
energy, and it offers more detailed insight by allowing penetration to be inter-
preted as a function of the applied energy. Hammer weights vary considerably
across devices, from as little as 2 kg for the LDCP to as much as 63.5 kg for
the DCPT.

ii. Operation (Table 3): With the exception of the DCPT, all penetrometers require
calibration. The LDCP is distinctive in that it demands a reference calibration
based on the parameters qd0, qd1, and Zc. In practice, this calibration is sup-
ported by curated databases accessible through the Websprint platform, which
ensures higher repeatability and minimizes operator dependence compared
with manually read devices, such as the DCP-Standard or the DCP-Utility.

iii. Application (Table 4): Among the instruments reviewed, the LDCP is the only
one that can be used reliably for both QC and QA. In QA mode, the LDCP can
reach depths of up to 6.0 m, clearly outperforming the DCP-Utility (0.16 m),
the PANDITO (0.5 m), and the DCP-Standard (1.0 m). While the DCPT is
capable of penetrating as deep as 15 m, its use is logistically demanding,
requires multiple operators, and is not suited for routine compaction control.

iv. Standards (Table 5): The DCP-Standard (ASTM D6951) and DCP-Utility
(ASTM D7380) are mainly intended for shallow pavement layers. By con-
trast, the LDCP is covered by the French standard NF P 94-105, which applies
not only to pavements, but also to compacted fills and natural subgrades,
explicitly covering both QC and QA applications. The DCPT, on the other
hand, is regulated under NF P 94-063, a standard focused on deep soil profiling
rather than compaction control.
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Table 2. The equipment characteristics of LDCP, DCP-Utility, DCP-Standard, PANDITO, and DCPT.

Characteristic LDCP DCP-Utility DCP-Standard PANDITO DCPT

Hammer weight (kg) 2.0 2.3 8.0 or 4.6 5.0 63.5
Drop height (cm) Variable 50.8 ± 1.0 57.5 61.0 75.0
Tip area (cm2) 2.0/4.0 4.84 4.04 2.0 44.77
Tip angle (°) 90 25 60 90 60
Rod diameter (mm) 14 17.5 16.0 14 50
Rod length (cm) 50 47.1 100.1 52 150

Table 3. Operational characteristics of LDCP, DCP-Utility, DCP-Standard, PANDITO, and DCPT.

Characteristic LDCP DCP-Utility DCP-Standard PANDITO DCPT

Calibration Yes Yes Yes Yes No
Portability High High High High Low
Durability Very good Good Good Good Good

Standard XP P 94-105 ASTM D7380 ASTM D6951 Non-
standardized

Non-
standardized

Operator type Technician Worker Worker Worker Worker
Training Medium Low Low Low Medium

Table 4. Applications of LDCP, DCP-Utility, DCP-Standard, PANDITO, and DCPT.

Characteristic LDCP DCP-
Utility

DCP-
Standard PANDITO DCPT

QC during compaction Yes Yes Yes Yes No
QA/deep soil profiling Yes No No No Yes

Data recording Automatic Manual Manual Manual Manual/
auto

Max. depth (m) QC: 1.2,
QA: 6.0 0.16 1.0 0.5 15.0

Repeatability Very good N/I N/I N/I Low

Table 5. Summary of standards for dynamic penetrometers in compaction control.

Standard Designation Penetrometers Applications Calibration

ASTM D6951 Standard DCP Pavement bases In situ CBR,
QA laboratory

ASTM D7380 Utility DCP Pavement bases In situ CBR,
QC laboratory

XP P 94-105 LDCP Pavements, fills, subgrades QC/QA laboratory
and field

N/I DCPT Embankments and subgrades QA Field

(iii) Intelligent compaction (IC).

Intelligent compaction equips vibratory rollers with accelerometers and Global Navi-
gation Satellite System (GNSS) receivers to produce continuous compaction control (CCC)
maps and stiffness-based IC measurement values (ICMVs). IC greatly improves coverage
and process control; typical practice calibrates ICMVs against spot tests (density, LWD, and
DCP) on a test strip before production [30,31,34]. The moisture, stress state, and underlying
layers influence ICMVs, so most agencies still pair IC with verification testing [31].

(iv) Remark on data-driven control.

A recent work has explored machine learning models to predict compaction parame-
ters and QC indicators directly from soil descriptors and field signals, potentially reducing
the testing effort while improving uniformity [16].
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2.3. Related Work

To contextualize this study, the literature was synthesized into six thematic clusters:
(1) classical QA/QC for compaction; (2) dynamic penetrometers for compaction control;
(3) intelligent/continuous compaction control; (4) data-driven and ML prediction of in situ
resistance or acceptance metrics; (5) explainable ML in geotechnics; and (6) standards
and specifications.

(i) Classical QA/QC for compaction (density-, stiffness-, and penetration-based).

Field acceptance has historically relied on achieving a percentage of the laboratory (γd max)
determined by SPC or MPC tests, with control of water content around the (Wopt) [1–3,32,33].
In situ verification has been implemented primarily with the sand cone and nuclear gauge
methods; the rubber-balloon method appears in legacy practice but was withdrawn in
2024 [4,5]. These density-based spot tests are robust but spatially sparse. Stiffness-oriented
methods, such as static plate load (EV1/EV2) per DIN 18134 and portable impact/deflection
devices (LWD/PFWD), provide performance-related metrics and have been adopted to
complement density checks [7–9]. Comparative studies show reasonable trends between
the density, deflection-derived modulus, and CBR index, with moisture- and gradation-
dependent scatter [11,31,46]. Take away: density tests provide traceable compliance to lab
benchmarks but limited coverage; stiffness and penetration offer performance-relevant
checks that benefit from local calibration.

DCP and LDCP (Panda; EN ISO 22476-2 classes DPL/DPM/DPH) provide fast re-
sistance profiles with depth, enabling the detection of weak lenses and stratification in
compacted layers [6,10]. Numerous field and laboratory studies report the correlations
between DCPT or LDP indices and the CBR index, modulus, and shear strength; for sands
and granular fills, logarithmic or power-law forms are common [11,46,47]. Moisture (W)
exerts a strong influence—penetration resistance typically decreases when compacted and
wet, Wopt—consistent with observations in lateritic and fine-grained soils [48]. Instru-
mented LDPs report the qd with improved resolution for softer materials and continuous
profiles; in this context, the near-surface and stable-depth indices qd0 and qd1 are used in
practice and were also used in this study (note that these indices are specific to instrumented
LDPs such as LDCP and are not reported by the ASTM DCP). Energy-based analyses highlight
the influence of the hammer energy transfer and shaft vibrations on derived indices [13].
Penetrometer results are sensitive to moisture state, oversized particles, and fabric; energy
standardization and consistent procedures improve repeatability. Compared to density
tests, penetrometers increase vertical resolution and productivity, but acceptance thresholds
typically require local calibration to laboratory references or modulus-based criteria [6,10].

(ii) Intelligent compaction (IC) and continuous compaction control (CCC).

IC-equipped rollers report an intelligent compaction measurement value (ICMV) that
reflects composite near-surface stiffness under vibratory loading, producing continuous
spatial coverage of compaction quality. Field comparisons show that ICMV trends align
with spot stiffness and strength indicators (e.g., ELWD and DCP penetration), while moisture
and underlying layer effects introduce scatter [30,34]. Reviews emphasize IC as a process
control tool to homogenize compaction and reduce testing blind spots; calibration on test
strips against point tests remains essential for setting project-specific thresholds [30,31,34].
Take away: IC/CCC improves spatial coverage and process feedback; acceptance typically
combines IC mapping with limited spot verification (e.g., LWD and DCP).

(iii) Machine learning for predicting the in situ strength or compaction outcomes.

Data-driven models have been increasingly used to estimate compaction-relevant
properties from readily available descriptors (grain size indices, Atterberg limits, moisture
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and density states, and binder contents for treated soils). In expansive and treated soils,
Gaussian process regression (GPR) and ensemble methods have been shown to predict
the soaked CBR index with high accuracy using limited but well-curated datasets, thereby
offering rapid proxies to time-consuming laboratory tests [15]. For borrow-source screening
and design targeting, ensemble models (Random Forest, XGBoost) have been reported
to predict the Proctor parameters (γd max, Wopt) of expansive soils with an R2 above 0.9,
highlighting the value of the nonlinear feature interactions between plasticity, FC, and com-
paction energy [16]. For performance-oriented acceptance, ML has been applied to stiffness
surrogates: the resilient modulus of compacted subgrades has been predicted using ensem-
ble learners (bagging/boosting over trees and k-NN), and it has been compared against
neural models, with external validation across stress states [17]. Similar trends have been
confirmed for cementitiously stabilized subgrades, where SVM, ANN, and GPR models
capture the stress- and moisture-dependence of Mr beyond linear correlations [18]. Typical
sample sizes range from 102 to 103 observations; reported limitations include site-specific
bias and reduced extrapolation when moisture or gradation fall outside the training do-
main. Take away: ensemble and kernel methods provide accurate surrogates for the CBR
index /γd max/Wopt/Mr, but generalization depends on broad, well-stratified datasets and
consistent feature spaces.

(iv) Explainable ML (XAI) in geotechnics.

Interpretability has been adopted to assess whether ML decisions are consistent with
soil mechanics. SHAP-based analyses have been used to rank physical drivers and expose
the nonlinear effects in stabilized soils; for example, geopolymer-treated clays have shown
feature attributions aligned with expectations (binder type/content increasing UCS; higher
plasticity reducing it) [23]. For hazard-type classification tasks, an XGBoost–SHAP frame-
work for liquefaction potential has provided global and local explanations, identifying
penetration resistance and fines as dominant contributors and flagging class-imbalance
remedies (SMOTE) as influential to model stability [49]. Beyond case studies, recent
methodological critiques have proposed evaluation structures combining performance
metrics with domain plausibility checks and data/algorithm audits, advocating routine use
of tools such as SHAP to verify monotonic trends (e.g., density ↑ ⇒ strength ↑) and to detect
spurious shortcuts [24]. Take away: SHAP/TreeSHAP has matured as a practical audit
layer for tree/ensemble models; embedding physical plausibility and data diagnostics
alongside accuracy improves trust and facilitates specification uptake.

(v) Standards, guidelines, and specifications.

Laboratory references for acceptance are codified in ASTM/AASHTO and EN stan-
dards, which define the Proctor procedures and field density methods that underpin
percentage-compaction criteria [1–5,32,33]. Dynamic probing procedures (EN ISO 22476-2,
with Amendment 1) and the ASTM DCP standard provide consistency and energy normal-
ization for penetration-based control [6,10]. European practice references modulus-based
control via plate load and LWD/PFWD correlations for unbound layers [7–9]. Implemen-
tation guidance for IC emphasizes calibration with point tests before production [30,31].
Take away: specifications are evolving from density-only acceptance toward complementary
stiffness and penetration criteria, with standardized procedures enabling traceability and
calibration across methods.

(vi) Rationale for emphasizing dynamic penetrometers in this study.

Dynamic penetrometers offer rapid, low-cost, and portable profiling of resistance
with depth, yielding dense spatial information compared with sparse density tests.
The lightweight/instrumented class provides indices (qd) that are sensitive to both density
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and moisture state—primary drivers of compaction performance—and can be consistently
standardized under EN ISO 22476-2 and ASTM D6951 [6,10]. Given these properties
and their empirical links to the CBR index/modulus, the penetrometric indices qd0 and
qd1 are natural targets for prediction and interpretation in ML workflows aligned with
field logistics.

3. Materials and Methods
3.1. Database

A database was assembled from field compaction control campaigns performed with
a LDCP and from companion laboratory tests. Records were drawn from several con-
struction materials that covered a broad grain size spectrum, including gravelly fills and
sands (e.g., site gravel; rolled or crushed gravels in the ranges 4/8, 6/10, and 10/20 mm;
and a calibration sand). For each record, a soil class under the GTR system (Guide des
Terrassements Routiers) [50] was registered (e.g., D2, DC1, DC3, and B2), and a Unified
Soil Classification System (USCS) [51] label was included when available. A site identifier
(Nom_BDD) was stored to allow grouping by origin during validation. A graphical overview
of the soil-type coverage is provided in Figure 2.

The following families of variables were recorded for every observation, depending
on availability:

• Grain-size descriptors: key indicators derived from standard sieve and hydrometer
analyses. These include the characteristic diameters D10, D30, D50, and D60, which
correspond to the particle sizes at which 10%, 30%, 50%, and 60% of the soil mass
passes through the gradation curve. The maximum particle size Dmax and the full
cumulative passing distribution were also taken into account. In addition, the relative
fractions of gravel (G), sand (S), and fines (F) were considered to describe the over-
all soil texture. Whenever possible, classical gradation coefficients were computed,
including the coefficient of uniformity (Cu = D60/D10), the coefficient of curvature
(Cc = D2

30/(D10 · D60)), and, where relevant, the high-plasticity clay index (CH). Taken
together, these descriptors provide a consistent framework to capture both the spread
and the shape of the particle-size distribution.

• Plasticity and fines activity: parameters describing the consistency and surface activity
of fine-grained soils. The Atterberg limits include the liquid limit (WL) and the plastic
limit (WP), from which the plasticity index (PI = WL − WP) is derived. These indices
provide insight into the soil’s water retention capacity, workability, and its tendency
to undergo volumetric changes. In addition, the methylene blue value (VBS) was
considered an indicator of the surface activity of clay minerals. This parameter reflects
both the quantity and the reactivity of the clay fraction, complementing the Atterberg
limits by providing information on the adsorption properties and potential sensitivity
of the fines.

• State variables: descriptors of the in situ condition of the soil. These include the
natural water content (W), expressed as a percentage of the dry mass, and the dry unit
weight (γd,field). Together, these parameters provide a direct measure of the balance
between moisture and density that governs soil performance.

• Compaction references: parameters derived from the SPC test are used. These include
the Wopt and the maximum dry density SPC γd max. Based on γd,field and SPC γd max,
the percentage RCSPC is obtained.

• Penetrometric responses: in situ indices qd0 and qd1 obtained with a lightweight
dynamic cone penetrometer (LDCP). The parameter qd0 represents the dynamic cone
resistance recorded at or near the surface, while qd1 corresponds to the stabilized
resistance reached once the soil becomes confined at depth. This transition occurs at a
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critical depth Zc, beyond which the resistance tends to remain constant. These values
were determined consistently for all cases included in the database.

Heterogeneous naming from the original sheets was harmonized, and decimal com-
mas were converted into decimal points. Basic consistency checks were applied to remove
duplicate rows and physically impossible entries. For modeling, the regression target
was qd1. Records with missing target values were excluded, while missing feature values
were handled by median imputation inside the learning pipelines. Continuous features
were standardized when required by the estimator. To enable later assessment of gener-
alization across sites or materials, the Nom_BDD and GTR fields were retained for grouped
resampling schemes.

Each row in the database corresponds to a unique set of measured or derived properties
associated with field and laboratory data. While multiple records may originate from the
same work front or construction site, the combination of attributes recorded for each is
not an exact copy of any other. Differences can occur in one or several variables—for
example, in gradation, plasticity, water content, dry density, or compaction reference
values—reflecting real spatial and material variability within the works. Repeated entries
and exact duplicates were removed during quality control, and heterogeneous naming
was harmonized as described previously. Under this structure, the records are treated as
distinct observations for modeling purposes.

Although multiple tests can originate from the same work front or site, the input
vectors associated with individual records differ because they reflect the specific soil state
and characterization at each test point. This heterogeneity is expressed through variations
in gradation descriptors (e.g., D10, D50, D60, Cu, and Cc), plasticity/activity indicators
(WL, WP, PI, and VBS), in situ conditions (W and γd,field), and compaction references (e.g.,
SPC γd max, and RCSPC). In practice, tests performed within the same site often exhibit
different moisture contents, densities, and even GTR/USCS classifications due to lift-to-lift
variability, changes in borrow sources, and adjustments in construction processes. This
variability constitutes the record-level diversity that is captured by the learning algorithms.

A site identifier (Nom_BDD) is stored to characterize the grouping structure and to enable
group-aware resampling schemes. Several GTR/USCS soil classes are represented at only
one site in the current database. This distribution creates a partial confounding between
site and class: for those classes that occur exclusively at a single site, the removal of that
site would imply the simultaneous removal of all training data for those classes, effectively
transforming the task into extrapolation to unseen soil types rather than evaluation of cross-
site generalization for shared classes. Under this structure, applying a global leave-one-
site-out (LOSO) scheme would simultaneously test for site transfer and for class deletion.
To avoid this confounding, the primary evaluation is based on a fixed 80/20 random hold
out that preserves class coverage in both training and testing partitions, with the random
seed shared across model families to ensure comparability. The site identifier is retained
only for diagnostic purposes and for the design of optional group-aware sensitivity checks
on subsets where at least two sites share the same GTR class.

The full dataset comprises 360 records distributed across multiple GTR soil classes,
covering a broad range of compaction behaviors. Table 6 summarizes the number of records
per class. The most frequent classes are B5 (101 records) and A1 (90 records), followed by
B4 (32) and A2 (26). Less represented classes include D1, B2, B6, DC3, B3, D2, B1, and DC1,
each with fewer than 20 observations. This distribution provides good coverage of the
coarse (A-family) and fine-grained (B- and D-family) materials typically encountered in
earthwork projects.
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Table 6. Distribution of records by GTR soil class.

GTR Class Number of Records

B5 101
A1 90
B4 32
A2 26
D1 19
B2 11
B6 11
DC3 10
B3 10
D2 9
B1 9
DC1 4

The coverage of soil types is visualized in the GTR diagram in Figure 2. Each observa-
tion was positioned by its VBS, PI, and fines contents at 0.08 mm and 2 mm. A broad span
across the A-, B-, and D-families was observed, indicating that both low- and high-plasticity
ranges and a wide spectrum of fines contents were represented. This graphical check was
used to confirm that the database captured typical field materials used for earthworks and
to support later grouped resampling by GTR class.
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Figure 2. GTR classification map of the observations in the database. The diagram is defined by the
VBS on the horizontal axis, the percent passing at 0.08 mm (FC) on the left vertical axis (0–100%),
the percent passing at 2 mm on the right vertical axis (70–100%), and the PI on the top axis. Symbols
identify the soil types A1–A4, B1–B6, and D1–D2, with sample counts in parentheses.

3.2. Supervised Learning Methods for Penetrometric Response

Short descriptions of the learning techniques are provided below. Only defining ideas
and distinctive equations, without detailed derivations, are included. Model selection
was aligned with the data structure and the prediction task. The inputs are fixed-length
tabular predictors (gradation, plasticity/activity, in situ density and moisture, and Proctor
references), and the targets are scalar LDCP indices (qd0, qd1) or Zc, so the features do not
carry intrinsic temporal or positional order. Under this setting—small-to-medium sample
sizes, heterogeneous tabular variables, and scalar outputs—regularized linear models, SVR,
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tree ensembles (Random Forest, XGBoost), and a compact feed-forward MLP are strong,
data-efficient choices whose behavior can be audited with SHAP. Sequence architectures
(LSTM, GRU, and Transformers) add complexity and typically require larger sequential
datasets to realize their advantages; they are more appropriate when learning depth- or
time-resolved signals (e.g., full qd(z) profiles or CCC/IC time series) or when explicit
positional dependencies are present. For this reason, tabular learners were prioritized here,
and sequence models are left as a future extension if depth/time series are incorporated.

Ridge regression.

A linear predictor was fitted under the squared loss with an ℓ2 penalty to stabilize
coefficients under collinearity:

β̂ = arg min
β

1
n

n

∑
i=1

(
yi − x⊤i β

)2
+ λ∥β∥2

2,

with λ ≥ 0.

Lasso.

An ℓ1 penalty was used to promote sparsity (embedded selection):

β̂ = arg min
β

1
n

n

∑
i=1

(
yi − x⊤i β

)2
+ λ∥β∥1.

Elastic net.

A convex combination of ℓ1 and ℓ2 penalties balanced sparsity and stability:

β̂ = arg min
β

1
n

n

∑
i=1

(
yi − x⊤i β

)2
+ λ

(
(1 − α) 1

2∥β∥2
2 + α∥β∥1

)
,

with mixing parameter α ∈ [0, 1].

Support vector regression (SVR).

The ϵ-insensitive loss enforced a flat function with controlled deviations:

min
w,b,ξ,ξ∗

1
2∥w∥2

2 + C
n

∑
i=1

(ξi + ξ∗i ) s.t.


yi − (w⊤ϕ(xi) + b) ≤ ϵ + ξi,

(w⊤ϕ(xi) + b)− yi ≤ ϵ + ξ∗i ,

ξi, ξ∗i ≥ 0,

with kernel predictor

ŷ(x) =
n

∑
i=1

(αi − α∗i )K(xi, x) + b.

Random Forest.

An ensemble of decision trees was grown on bootstrap samples with random feature
subsetting at each split; predictions were then averaged:

ŷ(x) =
1
T

T

∑
t=1

ht(x).

Splits maximized the reduction in variance:

∆ = Var(S)− nL
n

Var(SL)−
nR
n

Var(SR).
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Gradient boosting with trees.

An additive model was built stagewise to follow the negative gradient of the loss:

f0(x) = arg min
c ∑

i
ℓ(yi, c), fm(x) = fm−1(x) + ν γm hm(x),

where hm is a shallow tree fitted to pseudo-residuals rim = −∂ℓ(yi, f (xi))/∂ f | f= fm−1
, γm is

a line-search weight, and ν ∈ (0, 1] is the learning rate.

Feed-forward neural network (MLP).

A fully connected network with L layers modeled smooth nonlinear mappings:

ŷ(x) = WL σ
(
WL−1σ(· · · σ(W1x + b1) · · · ) + bL−1

)
+ bL,

with activation σ (ReLU or tanh). Parameters were obtained by minimizing MSE with L2

weight decay and early stopping. Inputs were standardized.

Common preprocessing and tuning.

All models were embedded in identical pipelines with median imputation. Standard-
ization was applied when required (SVR and MLP) and skipped for tree-based models. Hy-
perparameters (e.g., λ, α, C, tree depth, and learning rate) were selected by cross-validation
to ensure fair comparison.

3.3. Modeling Pipeline and Evaluation

A single, reusable pipeline was applied to all models. The primary analysis focused
on qd1 for the formal train–test evaluation, and additional models were fit for qd0 and Zc

to support comparative plots and SHAP explanations. The set of predictors is listed in
Table 7. Missing values were imputed by the median. Standardization was applied to
models that are scale-sensitive (linear models, SVR, and MLP) and skipped for tree-based
models (Random Forest, XGBoost). A stratified procedure was not required because the
outcome is continuous; instead, a random 80/20 train–test split was used with a fixed seed
for reproducibility. Model families and their search spaces are summarized in Table 8. Error
metrics were computed as defined in Table 9.

Training and inference were negligible in this study due to the small dataset (n = 360).
All models were trained in under 4 s on a standard laptop (Intel i9, 64 GB RAM) using
CPU implementations (scikit-learn/XGBoost), and the test time prediction was virtually
instantaneous. Computational cost did not constrain model selection or evaluation.

Algorithm 1 summarizes the end-to-end process. Grid search with 5-fold cross-
validation was used inside the training set and optimized the negative RMSE. The best
configuration per family was refit on the full training split and evaluated on the held-out
test split. In addition to test metrics, a manual 5-fold cross-validation of the selected pipeline
was computed on the entire dataset to report the mean ± SD for all metrics. For linear mod-
els, coefficients were exported when available. For the tree-based models, impurity-based
feature importances were exported. For the final boosting model, global and local explana-
tions were produced with SHAP (TreeExplainer), including the mean |SHAP| importances,
a beeswarm plot, and top-N dependence plots, along with tabular exports.

All steps in Algorithm 1 correspond to the provided code: median imputation, optional
standardization, grid searches in Table 8, metrics in Table 9, CSV artifact exports (e.g.,
predictions, residuals, and run logs), and the feature set in Table 7. The same random seed
and split ratio were used across families to enable fair comparison.
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Algorithm 1 Modeling and evaluation pipeline

1: Inputs: dataset D = {(xi, yi)}n
i=1 with standardized features (Table 7); model families

and grids (Table 8); metrics (Table 9)
2: Split: randomly partition D into train (80%) and test (20%) with a fixed seed
3: Preprocess:

Impute missing values in X by the median (fit on train, apply to train/test)
If the model is scale-sensitive (OLS/Ridge/Lasso/Elastic Net, SVR, MLP), stan-

dardize X (fit scaler on train, apply to train/test)
4: for each model family m ∈ {OLS, Ridge, Lasso, Elastic Net, SVR, MLP, RF, XGB} do
5: Define hyperparameter grid Gm (Table 8)
6: Perform 5-fold CV grid search on train with scoring −RMSE
7: Select best config θ̂m ∈ Gm by mean CV score
8: Refit pipeline (imputer, optional scaler, m(θ̂m)) on the full train split
9: Compute test metrics {R2, MSE, RMSE, MAE} (Table 9)

10: Export CV trials, θ̂m, test metrics, and predictions
11: if m is linear and coefficients are available then
12: Export standardized coefficient table
13: end if
14: if m ∈ {RF, XGB} then
15: Export impurity-based feature importances
16: end if
17: end for
18: Model-level cross-check: run manual 5-fold CV on the selected pipeline and export

mean ± SD metrics
19: Explainability (tree boosting): if XGB is retained, compute SHAP (TreeExplainer) on

test; export mean |SHAP| table, beeswarm and dependence plots, and per-sample
values

20: Outputs: CSV artifacts

Linear baselines (OLS, Ridge, Lasso, and Elastic Net) establish the transparent refer-
ence performance and quantify the linear signal with and without shrinkage. SVR with
several kernels captures nonlinear structures with margin control. A feed-forward MLP
acts as a generic nonlinear function approximator with early stopping. Random Forest (RF)
and XGBoost (XGB) are strong, regularized ensemble learners with built-in handling of
complex interactions and monotone trends; their grids (Table 8) were intentionally compact
to limit overfitting to validation folds.

The RMSE was minimized during tuning because it aligns with the squared-error
objectives used by linear and boosted-tree models. Final comparisons across families were
reported using R2, MSE, RMSE, and MAE, as defined in Table 9. The same train/test split
and cross-validation protocol were applied to all families to ensure fairness. This strategy
was chosen because each sample represents independent compaction and moisture condi-
tions, which helps reduce the chance of information leakage between training and testing.
At the same time, we acknowledge that grouped validation could offer useful insights into
site-specific effects, especially when larger and more balanced datasets are available.

For linear models, standardized coefficients were reported when applicable. For RF
and XGB, impurity-based importances were exported for global ranking. SHAP was used to
provide consistent, model-agnostic attributions on the final XGB pipeline: the mean |SHAP|
ranked variables globally, the beeswarm summarized feature effects, and the dependence
plots illustrated main effects and interactions.
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Table 7. The model inputs used in all experiments (standardized symbols).

Role Variables

Primary target qd,1
Auxiliary targets (for plots/SHAP) qd,0, Zc
Gradation D10, D30, D50, D60, Dmax
Plasticity/activity WL, WP, PI, VBS
State variables W, γd,field, Gs
Compaction refs. (SPC/MPC) SPC γd max, RCSPC

Dataset column names may differ (e.g., qd1→ qd,1, qd0→ qd,0). Legacy fields, such as OPN/Wopn/%OPN, were not
used directly and map to gmax

d , wopt, RCX, and |w − wopt|.

Table 8. Hyperparameter grids (summary of key ranges).

Family Estimator Grid (Key Ranges and Notes)

Linear OLS fit_intercept ∈ {True, False}
Linear Ridge α ∈ {0.01, 0.1, 1, 10, 100}
Linear Lasso α ∈ {0.0005, 0.001, 0.01, 0.1, 1}; max_iter= 20, 000
Linear Elastic Net α ∈ {0.0005, 0.001, 0.01, 0.1, 1}; l1-ratio ∈ {0.1, 0.3, 0.5, 0.7, 0.9}; max_iter= 20, 000
SVR RBF kernel C ∈ {0.1, 1, 10, 100}, ϵ ∈ {0.01, 0.1, 0.5, 1.0}, γ ∈ {scale, auto}
SVR Linear kernel C ∈ {0.1, 1, 10, 100}, ϵ ∈ {0.01, 0.1, 0.5, 1.0}
SVR Polynomial kernel C ∈ {0.1, 1, 10}, degree ∈ {2, 3}, ϵ ∈ {0.01, 0.1, 0.5}, γ ∈ {scale, auto}, coef0 ∈

{0, 1}
Neural MLPRegressor hidden sizes ∈ {(64), (128), (64, 32), (128, 64), (64, 64, 32)}; activation ∈

{relu, tanh}; α ∈ {10−5, 10−4, 10−3, 10−2}; learning rate init ∈ {10−3, 5 ·
10−3, 10−2}; batch size ∈ {16, 32, 64}; early_stopping= True; max_iter= 2000

Ensemble Random Forest (RF) nestimators ∈ {200, 400, 800}; max depth ∈ {None, 10, 20, 40}; min samples split
∈ {2, 5, 10}; min samples leaf ∈ {1, 2, 4}; max features ∈ {

√
, log2, 0.5}; bootstrap

∈ {True, False}
Ensemble XGBoost (XGB) nestimators ∈ {200, 500}; max depth ∈ {3, 6, 10}; learning rate ∈ {0.01, 0.05, 0.1};

subsample ∈ {0.7, 1.0}; colsample_bytree ∈ {0.7, 1.0}; reg_α ∈ {0, 0.1, 1}; reg_λ ∈
{1, 5, 10}; objective = reg:squarederror; tree_method = hist

Table 9. Error metrics: definitions and goals. n is the number of samples, yi are the true values, ŷi are
the predicted values, and ȳ is the sample mean of the true values.

Metric Definition Goal

MSE
1
n

n

∑
i=1

(
yi − ŷi

)2 Lower is better

RMSE

√
1
n

n

∑
i=1

(
yi − ŷi

)2 Lower is better

MAE
1
n

n

∑
i=1

|yi − ŷi| Lower is better

MAPE
100
n

n

∑
i=1

∣∣∣∣ yi − ŷi
yi

∣∣∣∣ Lower is better

R2 1 − ∑i(yi − ŷi)
2

∑i(yi − ȳ)2 Higher is better

R ∑i(yi − ȳ)(ŷi − ¯̂y)√
∑i(yi − ȳ)2

√
∑i(ŷi − ¯̂y)2

Closer to 1 (or −1) is better

As an additional statistical reference, we implemented a simple GTR-average predictor.
In this baseline, each observation was assigned the mean value of qd1 (or qd0, Zc), corre-
sponding to its GTR soil class (e.g., A1, A2, B5, etc.). This baseline reflects a naïve approach
that relies solely on soil classification without considering density, moisture, or grada-
tion descriptors. The comparison with machine learning models highlights how much
predictive accuracy is gained when these state and material descriptors are incorporated.
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4. Results Obtained
4.1. Model Comparison

The GTR-average baseline achieved only R2 = 0.056 and RMSE ≈ 10, confirming
that soil class alone carries minimal predictive information for qd1. The mean absolute
percentage error (MAPE) was included to provide a relative measure of error expressed as a
percentage, which is particularly useful for comparing model performance across different
scales. The Pearson correlation coefficient (R) complements R2 by capturing the strength
and direction of the linear relationship between predictions and observations. High values
of R indicate a strong linear association, even when R2 is modest.

The test performance for qd1 is summarized in Table 10. The MLP achieved the best fit
(R2 = 0.794, RMSE = 5.866), followed by XGB (R2 = 0.773, RMSE = 6.155), whereas the RF
and SVR exhibited larger errors (RMSE = 6.985 and 8.230, respectively). In relative terms,
the RMSE of MLP was lower by approximately 4.7% compared with XGB, 16% compared
with RF, and 29% compared with SVR, indicating a consistent advantage of MLP on the
held-out test set (Table 10).

The prediction–measurement scatter across targets and models is displayed in Figure 3.
Linear baselines are shown for qualitative reference; the summary tables focus on the four
best-performing families. Point clouds were observed to lie close to the identity line,
with tighter clustering for MLP and XGB. A mild underestimation at the upper tail of
qd1 was visually apparent, which is further examined through calibration analysis in the
statistical validation subsection.

Five-fold cross-validation results (Table 11) were consistent with the test set ranking.
The MLP attained the lowest average error (RMSE = 4.844 ± 0.898) and the highest mean
R2 (0.732 ± 0.143). XGB and SVR presented similar mean R2 values (0.716–0.722), while
SVR and RF showed larger fold-to-fold variability (RMSE standard deviations of 1.94 and
1.78), suggesting greater sensitivity to data partitioning.

Because several differences were modest (for example, MLP versus XGB), a formal as-
sessment with bootstrap uncertainty, paired comparisons with multiplicity control, and cal-
ibration statistics is reported in the next subsection.

Table 10. Test set performance (qd1). R2, RMSE, MAE, and MSE reported by model.

Model R2 (Test)
RMSE
(Test)

MAE
(Test)

MSE
(Test)

MAPE
(Test) R (Test)

Baseline (Average) 0.056 10.011 6.382 100.238
MLP 0.794 5.866 2.870 34.414 70.225 0.895
RF 0.708 6.985 3.678 48.784 111.248 0.859
SVR 0.595 8.230 3.809 67.732 104.904 0.854
XGB 0.773 6.155 3.378 37.887 99.494 0.885

Table 11. Five-fold cross-validation (qd1). The test statistics and mean ± SD are shown below each metric.

Model R2 RMSE MAE MSE MAPE (%) R

MLP 0.732
±0.143

4.844
±0.898

2.628
±0.443

24.273
±8.801

74.62
±51.24

0.897
±0.024

RF 0.715
±0.092

5.381
±1.778

2.807
±0.862

32.122
±18.834

134.757
±37.55

0.850
±0.055

SVR 0.722
±0.100

5.276
±1.943

2.700
±0.696

31.615
±22.282

212,807
±57.70

0.876
±0.041

XGB 0.716
±0.077

5.224
±1.247

2.723
±0.552

28.849
±12.916

147.52
±46.27

0.871
±0.050
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Figure 3. The prediction–measurement scatter for qd0, qd1, and Zc across model families. The dashed
line indicates the identity (1:1); panel headers report the R2 and RMSE.

A CPU benchmarking procedure was conducted to evaluate the computational cost
of training and the single-sample inference latency of the final models (MLP, XGBoost,
Random Forest, and SVM). A warm-up fit–predict cycle was first performed to minimize
cold-start effects. Each model was subsequently retrained from scratch seven times in order
to estimate the mean and standard deviation of the training time. Single-sample inference
latency was measured using 400 repeated one-row predictions with fixed random indexing,
while single-thread execution was enforced when applicable to ensure comparability.

Detailed per-trial timings were stored in CSV files ({MODEL}_fit_runs.csv and
{MODEL}_predict_1sample_runs.csv), and summary statistics were compiled in a
Timings.csv file containing system metadata.

The resulting training times and latencies are presented in Table 12. Training was
found to be inexpensive for all models, with SVM exhibiting the lowest mean training
time (0.008 s), followed by XGBoost (0.108 s), MLP (0.356 s), and Random Forest (3.258 s).
Inference latency for a single sample was below 2 ms for all models except Random Forest,
which showed a markedly higher latency of 58.5 ms.
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These results indicate that MLP and XGBoost achieved strong predictive performance
while maintaining low computational overhead, making them suitable for real-time de-
ployment and rapid model retraining workflows. In contrast, the higher inference cost of
Random Forest may limit its applicability in latency-critical contexts.

Table 12. The training time and single-sample latency for each model. Training time is reported in
seconds; latency is reported in milliseconds. Values represent the mean ± standard deviation over
multiple runs.

Model # Fit Runs Fit Time (s) # Latency Runs Latency 1-Sample (ms)

MLP 7 0.356 ± 0.020 400 1.431 ± 0.272
RF 7 3.258 ± 0.070 400 58.499 ± 6.192
SVM 7 0.008 ± 0.000 400 0.853 ± 0.077
XGB 7 0.108 ± 0.001 400 1.836 ± 0.371

4.2. Calibration, Residuals, and Prediction Intervals

Calibration and uncertainty were evaluated as part of the model performance analysis.
Calibration was assessed by regressing the observed values on predictions in the test set
and by examining residual diagnostics and residual distributions [52]. These diagnostics
provide complementary perspectives: the calibration regression quantifies systematic biases
(through slope and intercept), while the residual plots allow for the visual inspection of
deviations from ideal behavior.

Prediction-level uncertainty was quantified through split-conformal prediction inter-
vals, where a model-agnostic procedure with finite-sample coverage guarantees under the
exchangeability assumption [53,54]. In this approach, the training set is split into two parts.
The first subset is used to fit the model, while the second subset (the calibration set) is used
to compute the nonconformity scores as the absolute residuals between predicted and ob-
served values. The (1− α) quantile of these scores is then used to build symmetric intervals
of the form ŷ ± q̂α for each new prediction. This construction provides distribution-free
uncertainty quantification without assuming specific error models.

Figure 4 summarizes the calibration and residual diagnostics for both XGBoost (top
row) and MLP (bottom row). The left column shows the residual distributions, which are
useful for inspecting dispersion and asymmetry, while the right column presents parity
plots with fitted calibration lines compared against the ideal y = x line. The calibration
slopes and intercepts were close to the ideal values, indicating reasonable agreement
between the predicted and observed responses. Residual plots displayed limited structure
overall, although some heteroscedasticity was visible at higher predicted values.

For XGBoost, the absolute-residual quantile at α = 0.10 was q̂α = 4.006, resulting
in (1 − α) prediction intervals of the form ŷ ± 4.006. The empirical coverage on the test
set was 0.701 (target ≈ 0.90), which indicates undercoverage under this simple, global
construction. This undercoverage is likely due to residual heteroscedasticity and differences
between calibration and test data distributions. For MLP, the corresponding quantile was
q̂α = 4.7481 with an empirical coverage of 0.851, which was closer to the nominal target.
The lower bounds of these intervals can be directly compared with compaction acceptance
thresholds, providing a transparent and statistically grounded basis for QA/QC decisions
in the field.

A simple but robust QA/QC procedure can be derived directly from the calibrated
models and their conformal prediction intervals. For each new test location, the model
prediction ŷ and its (1 − α) prediction interval [ŷ − q̂α, ŷ + q̂α] are computed. The lower
and upper bounds of this interval are then compared with the acceptance threshold T
defined by the compaction specification (e.g., the required qd1 value).
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Figure 4. Summary of the calibration and residual diagnostics for XGBoost (top) and MLP (bottom).
Left: residual distributions. Right: parity plots with fitted calibration lines compared to the ideal
y = x line.

The following rule is then applied. If the lower bound of the interval is above T,
the location is accepted with an estimated error rate of, at most, α under the exchangeability
assumption. If the upper bound is below T, the location is rejected. If T lies inside the
interval, the result is classified as a “gray zone” and additional on-site verification (e.g.,
density or penetrometer testing) can be carried out. This three-way decision rule connects
the statistical model to operational QA/QC decisions in a transparent way.

Practical error rates can be estimated on the test set by comparing predictions and
intervals against observed values. False acceptance is defined as the proportion of cases
where the lower bound is above T but the true value is below T. False rejection is defined
analogously. These rates provide a clear picture of how often decisions based on model
predictions would differ from those based on measured values, and they can be adjusted
by selecting α or adding a safety margin to T.

This framework provides a principled way to translate statistical calibration and uncer-
tainty quantification into field decisions. Because the conformal intervals have finite-sample
coverage guarantees, the resulting acceptance and rejection decisions have a quantifiable risk
that can be explicitly reported and controlled, rather than relying on ad hoc safety factors.

To complement the calibration and conformal analysis, the models were also evaluated
using percentage errors (MAPE-style), which were defined as 100 |y − ŷ|/|y|. This relative
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metric enables a direct comparison of performance across different ranges of the target
variable. Two complementary visualizations were used for this analysis: heatmaps of the
mean percentage error stratified by deciles of y and ŷ, and histograms of the percentage
error on the test set. These are shown in Figure 5 (page 1), with XGBoost in the top row
and MLP in the bottom row.

The heatmaps display how the relative error varied jointly across actual and predicted
deciles, with each cell reporting the mean percentage error and being annotated with the
corresponding sample size n. For XGBoost, the lowest errors were concentrated along
the diagonal, indicating reasonable calibration for mid-range values. A few yellow cells,
corresponding to the highest percentage errors, are located in the upper central region of
the heatmap. These cells are associated with small values of y and higher predicted deciles,
reflecting over-prediction in the low-value regime. Their sample sizes are very small
(n = 1), which makes their mean values less stable but still highlights systematic patterns
worth noting. The histogram supports this interpretation: most errors are moderate, but a
long right tail remains, with some extreme values reaching approximately 300–400%. These
large relative errors occur mainly when the denominator y is small.

In the case of MLP, the heatmap exhibits a more uniform pattern overall. The diagonal
is consistently cool, and only one yellow cell is present (first row, third column), again
associated with small-y values. High-error, off-diagonal cells were less frequent than
in XGBoost, and the histogram shows a clear leftward shift, with a larger proportion of
predictions displaying lower percentage errors. Although a tail of high relative errors
persisted, these were isolated and mostly linked to very small denominators.

Taken together, these visualizations indicate that both models perform well in mid-
range regimes, while relative errors increase for small values of y, particularly when
predictions overshoot. Compared to XGBoost, MLP shows a tighter distribution of per-
centage errors and a more stable heatmap structure, suggesting greater robustness on a
relative scale.

Figure 5. Percentage-error analysis (MAPE-style) for XGBoost (top) and MLP (bottom). Left: heatmap
of the mean percentage error by deciles of y (actual) and ŷ (predicted), annotated with sample sizes.
Right: histogram of the percentage errors on the test set.
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4.3. Variable Importance and Model Explanations

Model explanations were obtained with SHAP (SHapley Additive exPlanations),
in which each prediction was decomposed into additive feature contributions derived from
Shapley values in cooperative game theory [22,55–57]. In this setting, a global ranking
of predictors is provided by the mean absolute SHAP value, and local directionality for
each observation is given by the sign of the contribution. Summary beeswarm plots were
produced for the XGBoost models of qd0, qd1, and Zc (Figures 6–8); each dot represents one
sample, the horizontal axis shows the SHAP value, and the color encodes the raw feature
value (blue = low, red = high). Throughout this subsection, explanations are understood
as model-based associations conditional on the fitted algorithm and the empirical joint
distribution of the predictors; they are not to be interpreted as causal effects. In addition,
because several predictors were correlated (e.g., γd,field, RCSPC, and W), the magnitude and
sign of attributions were conditional and should be read as partial effects under collinearity.
To mitigate over-interpretation, we triangulated SHAP with permutation importance,
partial dependence (PDP), and accumulated local effects (ALEs).

A geotechnical reading of these summaries is provided to connect attributions with
mechanisms. Variables tied to state (γd,field, W) and to compaction references (RCSPC,
wopt) were assigned the largest contributions across targets, while grain size and plasticity
descriptors (for example, D50, FC, IP, and VBS) provided secondary adjustments. For qd0

(Figure 6), higher gd and larger RCSPC were associated with positive SHAP values, which is
consistent with higher dry density and a compaction state closer to the laboratory optimum
yielding greater penetration resistance. Higher moisture was associated with negative
contributions, in agreement with lubrication effects and loss of apparent suction away
from the optimum water content. Color gradients along the horizontal axis suggested
that the effect of moisture was not uniform over the range of γd,field and RCSPC, indicating
interaction between density state and W. Grain-size indicators with larger characteristic
diameters (for example, D50) tended to contribute positively, reflecting increased inter-
locking and stiffness in coarser fills; conversely, higher FC and higher plasticity (PI, VBS)
tended to contribute negatively at comparable compaction states. These patterns align
with established compaction mechanics, but they remain associational and conditional on
correlated inputs; individual SHAP values should, therefore, not be construed as causal
effects of the corresponding variables.

For qd1 (Figure 7), the same hierarchy was observed: γd,field and RCSPC drove positive
contributions and moisture drove negative contributions. The magnitude of moisture-
related attributions appeared larger than for qd0, which is compatible with the cumulative
effect of pore water on the resistance after the initial seating. This pattern is consistent with
the prediction–measurement comparison shown in Section 4.1, where underestimation at
high qd1 values was noted, and it also suggests that departures from the optimal compaction
water content are a plausible contributor to that bias in the upper tail. Again, these
explanations are conditional on the trained model and the observed data distribution,
and they should not be interpreted causally; correlated predictors may share or trade
attribution mass.

For Zc (Figure 8), leading roles were assigned to gd and moisture, with RCSPC and
coarse-fraction indicators following. The dominance of density- and water-related variables
across the three targets supports a coherent physical interpretation in which the state of
compaction controls both the level of resistance and the depth-related response. Narrower
spreads in SHAP values for Zc were in line with the smaller inter-model differences
observed in the scatter plots. The explanatory patterns for Zc were likewise associational;
they summarize how the fitted model organized the contributions under the observed
correlations and do not imply causal mechanisms.
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Figure 6. SHAP beeswarm summary for the XGBoost model predicting qd0. Each dot represents one
observation; the horizontal axis shows the SHAP value (feature contribution to the model output),
and the color encodes the raw feature value (blue = low, red = high). Features are ordered by mean
absolute SHAP.
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Figure 7. SHAP beeswarm summary for the XGBoost model predicting qd1. Interpretation as in
Figure 6.

Two caveats are emphasized. First, SHAP values explain the behavior of the trained
models rather than causal effects; signs and magnitudes are conditional on the remaining
predictors and on the empirical joint distribution, as summarized in Figure 2. Second,
several predictors were correlated by construction (for example, γd,field, RCSPC, and W),
so individual attributions should be read as conditional marginal effects. Consistent with
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these caveats, all interpretation is reported alongside permutation-based importance and
effect-shape diagnostics (PDP and ALE) to provide convergent, non-causal evidence about
influential predictors and their functional forms.
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Figure 8. SHAP beeswarm summary for the XGBoost model predicting Zc. Interpretation as in
Figure 6.
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Beyond SHAP, complementary analyses were carried out with permutation impor-
tance, partial dependence plots (PDPs), and accumulated local effects (ALE). Permutation
importance quantified the decrease in predictive accuracy after random shuffling of each
variable, providing a robust global ranking (Figure 9).

To interrogate the shape of the effects, 1D PDPs were produced for the four most
influential predictors from permutation importance (Figure 10). A PDP shows the marginal
effect of a feature on the model prediction while averaging over the distribution of the
remaining inputs. The plots indicated the following: (i) a strongly increasing, non-linear
response with γd,field, with a marked rise beyond ∼18 kN/m3; (ii) a monotonic increase
with RCSPC, especially near full compaction (≳0.95–1.00); (iii) a decreasing trend with water
content W, with a knee around 9–10% consistent with departure from the optimal water
condition; and (iv) a comparatively flat response with wopt, suggesting that the observed
variation in wopt mainly acts through its relation with W and γd,field. The shapes and
thresholds were coherent with the geotechnical mechanisms inferred from SHAP.

ALE plots were also generated (Figure 11). ALE is less sensitive to correlations among
predictors and provides unbiased estimates of feature effects by local differencing. The ALE
results confirmed the dominance of density- and water-related variables, with sharp in-
creases in predicted response at high γd,field and RCSPC, as well as a negative influence of
increasing water content. The consistency between PDPs and ALE reinforces the physical
interpretation that compaction state governs both the level of resistance and the progression
of response.

For qd1 (Figure 7), the same hierarchy was observed: γd,field and RCSPC drove positive
contributions and moisture drove negative contributions. The magnitude of moisture-
related attributions appeared larger than for qd0, which is compatible with the cumulative
effect of pore water on resistance after the initial seating. This pattern is consistent with
the prediction–measurement comparison shown in Section 4.1, where underestimation
was at a high qd1 values was noted, and findings suggest that departures from the optimal
compaction water content are a plausible contributor to that bias in the upper tail.

For Zc (Figure 8), leading roles were assigned to gd and moisture, with RCSPC and
coarse-fraction indicators following. The dominance of density- and water-related variables
across the three targets supports a coherent physical interpretation in which the state of
compaction controls both the level of resistance and the depth-related response. Narrower
spreads in SHAP values for Zc were in line with the smaller inter-model differences
observed in the scatter plots.

In the permutation importance analysis (Figure 9), the dry unit weight in the field
(γd,field) and the natural water content (W) emerged as the dominant predictors, followed
by the compaction ratio (RCSPC). These variables largely coincide with those highlighted
by SHAP values, reinforcing the interpretation that soil density and moisture conditions
primarily govern the predicted response. Minor contributions from grain size parameters
indicate a secondary influence of texture on the model output.

To interrogate the shape of the effects, we produced 1D PDPs for the four most
influential predictors from permutation importance (Figure 10). The plots indicate the
following: (i) a strongly increasing, non-linear response with γd,field, with a marked rise
beyond ∼18 kN/m3; (ii) a monotonic increase with RCSPC, especially near full compaction
(≳0.95–1.00); (iii) a decreasing trend with water content W, with a knee around 9–10% that
is consistent with moving away from the optimal water condition; and (iv) a comparatively
flat response with wopt, suggesting that the observed variation in wopt mainly acts through
its relation with W and γd,field. The shapes and thresholds are coherent with the geotechnical
mechanisms discussed with SHAP.
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Figure 9. Permutation importance on the test set (XGBoost for qd1). Bars report the increase in test
MSE after permuting each feature; higher bars indicate more influential predictors.
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Figure 10. The 1D partial dependence for the four most influential features (from permutation
importance). Each panel shows the average model response as the selected feature varies over its
observed range, averaging over the joint distribution of the remaining predictors.

Because PDP averages can be biased under correlated predictors, we also constructed
1D ALE plots for the same four features (Figure 11). ALE confirms the main patterns:
the effect of γd,field and RCSPC was strongly positive and accelerated at the upper tail; the
effect of W was negative after ∼9–10%; and the effect of wopt was comparatively small.
The narrow confidence ribbons for γd,field and RCSPC indicate stable effects, whereas wider
ribbons at the extremes of W reflect data sparsity. The convergence of SHAP, permutation
importance, PDP, and ALE strengthens the conclusion that the compaction state (density
and relative compaction) and the in situ water content control the predicted resistance.
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Figure 11. The 1D accumulated local effects (ALEs) for the four most influential features. Shaded
regions show 95% confidence intervals obtained by bootstrapping (PyALE default); tick marks on the
x-axis indicate the empirical distribution.

4.4. Statistical Validation

This subsection reports a statistical assessment of the target variable qd1 predicted by
all model families on the fixed 80/20 train–test split (random state 42). Uncertainty in test
performance was quantified using B = 5000 bootstrap resamples of the test set. Pairwise
model contrasts were performed with paired resampling that reused identical indices across
models to ensure fair comparisons. Calibration was evaluated by regressing y on ŷ in the test
set. Performance was summarized with R2, RMSE, and MAE. To minimize distributional
assumptions, nonparametric bootstrap confidence intervals were reported, effect sizes
accompanied p-values, and family-wise error across pairwise tests was controlled with
Holm’s step-down adjustment [52,58–61]. A further limitation concerns data partitioning.
Although the random split ensured representation of all GTR classes in both training
and testing, it does not fully capture potential site effects. Future work should, therefore,
examine grouped or site-wise validation with larger and more balanced datasets to evaluate
cross-site generalization more explicitly.

The experimental design followed the fixed 80/20 train–test split defined in the
pipeline. From the test set, B = 5000 bootstrap resamples were drawn by sampling rows
with replacement. For each resample and model, R2, RMSE, and MAE were recomputed
and percentile 95% confidence intervals were formed (Table 13). Model comparisons were
performed with paired bootstrap tests on the RMSE using the same resampled indices for
each pair, and we report ∆RMSE = RMSEB − RMSEA (mean and 95% CI), two-sided p-
values, and the effect sizes for paired designs (Cohen’s dz and Cliff’s δ), with Holm-adjusted
p-values to address multiplicity (Table 14). Calibration was evaluated by regressing y on ŷ
in the test set and reporting the slope, intercept, and R2 with bootstrap intervals; values
near slope = 1 and intercept = 0 indicate good calibration (Table 15) [52].

The test set estimates indicated that MLP achieved the lowest errors (R2 = 0.794,
RMSE = 5.866, and MAE = 2.870), with XGB close behind (R2 = 0.773, RMSE = 6.155). RF
and SVR showed lower R2 and larger errors (Table 13). Paired bootstrap contrasts on the
RMSE yielded the largest mean gap for SVR versus MLP (∆RMSESVR−MLP = 2.300, 95%
CI [0.385, 4.116]), yet no pairwise comparison remained significant after Holm adjustment
(all adjusted p ≥ 0.113). For XGB versus MLP, ∆RMSE = 0.361 with a confidence interval
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spanning zero and effect sizes were uniformly small; in particular, Cliff’s δ ≈ 0.015 for XGB
versus MLP denotes a negligible dominance effect (Table 14). Calibration on the test set was
close to ideal for MLP and XGB (slopes 1.068 and 1.124; intercepts near zero; calibration
R2 = 0.801 and 0.784), whereas SVR exhibited a larger slope (1.598), consistent with under-
dispersion, and RF showed a milder version of this pattern (slope 1.246) (Table 15) [52].

Table 13. Test metrics with 95% bootstrap CIs (B=5000).

Model R2 (95% CI) RMSE (95% CI) MAE (95% CI)

MLP 0.794 [0.653, 0.902] 5.866 [3.179, 8.207] 2.870 [1.757, 4.178]
RF 0.708 [0.577, 0.812] 6.985 [4.164, 9.453] 3.678 [2.355, 5.219]
SVR 0.595 [0.482, 0.765] 8.230 [4.194, 11.597] 3.809 [2.231, 5.722]
XGB 0.773 [0.638, 0.851] 6.155 [3.970, 8.048] 3.378 [2.252, 4.686]

Table 14. Paired bootstrap comparisons for all model pairs (RMSE). Holm-adjusted p-values.

Pair ∆RMSE (Mean, 95% CI) p (Two-
Sided) Cohen dz Cliff’s δ p (Holm)

SVR-MLP 2.300 [0.385, 4.116] 0.0188 0.220 −0.075 0.1128
RF-MLP 1.149 [−0.083, 2.591] 0.0652 0.223 −0.045 0.3260
XGB-SVR −1.958 [−4.337, 0.536] 0.1296 −0.099 0.284 0.5184
SVR-RF 1.159 [−0.526, 2.678] 0.1632 0.041 −0.075 0.5184
XGB-RF −0.801 [−1.991, 0.575] 0.2304 −0.117 −0.134 0.5184
XGB-MLP 0.361 [−1.172, 2.369] 0.7536 0.131 0.015 0.7536

Table 15. Calibration of y vs. ŷ on the test set (slope/intercept/R2 with 95% CIs).

Model Slope b (95% CI) Intercept a (95% CI) R2 (95% CI)

MLP 1.068 [0.828, 1.322] 0.243 [−0.682, 1.190] 0.801 [0.679, 0.912]
RF 1.246 [0.898, 1.548] −1.344 [−2.837, 0.268] 0.739 [0.598, 0.864]
SVR 1.598 [1.171, 2.016] −1.311 [−2.796, 0.070] 0.730 [0.621, 0.853]
XGB 1.124 [0.830, 1.351] −0.592 [−1.584, 0.675] 0.784 [0.651, 0.884]

In conclusion, considering bootstrap uncertainty, paired testing with effect sizes,
and multiplicity control, the MLP provided the strongest overall performance on the
hold out test set, with XGB a close second; their difference is not statistically significant
at α = 0.05 after Holm adjustment. Both MLP and XGB display favorable calibration,
supporting their practical use for estimating qd1, while RF and SVR serve as useful baselines
with comparatively weaker accuracy and calibration. Future work should examine external-
like validation via grouped or site-wise resampling, report prediction intervals derived
from bootstrap resampling, and routinely monitor and update calibration upon deployment
to new materials or sites [52,58,59].

5. Conclusions
This study examined whether supervised machine learning can provide accurate and

interpretable surrogates of the LDCP indices qd0, qd1, and Zc for compaction QA/QC. Using
a curated multi-campaign dataset (n = 360) that couples LDCP results with routine geotech-
nical descriptors, we implemented a single pipeline across linear (ridge/lasso/elastic net);
kernel (SVR); tree-ensemble (Random Forest, XGBoost); and neural (MLP) learners.

For qd1, the MLP achieved the lowest test error (R2 = 0.794, RMSE = 5.866), and
XGBoost was close behind (R2 = 0.773, RMSE = 6.155). Importantly, paired bootstrap
testing with Holm adjustment showed that the MLP–XGBoost gap was not statistically
significant, indicating that both models can be regarded as equally effective on this dataset.
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Calibration slopes were near unity for both models, supporting practical use. The naïve
GTR-average baseline performed poorly, underscoring the added value of incorporating
state and material descriptors.

Interpretability analyses (SHAP, permutation importance, PDP, ALEs) were mutu-
ally consistent and aligned with soil-mechanics expectations: density/state and moisture
(γd,field, RCSPC, W) dominated the response, while gradation and plasticity provided sec-
ondary adjustments. These explanations are inherently model-based and conditional on
correlated predictors; they should not be interpreted as causal effects.

To connect predictions to field decision making, we reported split-conformal prediction
intervals and a simple three-way QA/QC rule: accept if the lower bound exceeds the
threshold T, reject if the upper bound is below T, and classify as a gray zone otherwise.
This procedure offers transparent, finite-sample coverage guarantees under exchangeability,
and it enables explicit control of false acceptance/rejection rates.

Limitations include the moderate sample size and the use of a fixed random 80/20
split, which—while preserving GTR coverage and reducing leakage across independent
observations—does not fully isolate potential site effects. Several predictors were correlated
by construction (e.g., γd,field, RCSPC, and W), so individual attributions are conditional.
A slight underestimation in the upper tail of qd1 suggests sensitivity to departures from
wopt. Computation was not a constraint (sub-second inference; < 2 s training per model
on CPU).

Future work should prioritize external-like assessment via grouped or site-wise re-
sampling once classes overlap across sites; explore truncated-input configurations for
deployments where some descriptors may be unavailable; incorporate physically informed
constraints (e.g., monotonicity in γd,field and W); extend to multi-task learning for joint
qd0/qd1 prediction; integrate with intelligent compaction to fuse ICMVs and model outputs
for closed-loop control; and advance cross-device/energy-transfer standardization to sup-
port broader adoption. Finally, routine calibration monitoring and interval reporting (e.g.,
bootstrap or conformal) are recommended for deployment.

Author Contributions: Conceptualization, J.R.-V. and J.G. (José García); methodology, J.R.-V. and
J.G. (José García); software, J.R.-V.; validation, G.V. (Gabriel Villavicencio), M.B., A.H., P.B., G.V.
(German Varas), P.M., J.G. (Jose Gornall), and H.P.; formal analysis, J.R.-V. and J.G. (José García);
investigation, J.R.-V. and J.G. (José García); data curation, J.R.-V. and J.G. (José García); writing—
original draft preparation, J.R.-V. and J.G. (José García); writing—review and editing, G.V. (Gabriel
Villavicencio), M.B., A.H., P.B., G.V. (German Varas), P.M., J.G. (Jose Gornall), and H.P.; visualization,
J.R.-V.; supervision, H.P. and P.B.; project administration, J.R.-V. and H.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by FONDEF ANID, grant ID23I10249, project Sand Guardian.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors. (The data are based on real laboratory tests, and confidentiality agreements
prevent open sharing).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. ASTM D698-12; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft·lbf/ft³

(600 kN·m/m³)). ASTM International: West Conshohocken, PA, USA , 2021. [CrossRef]
2. ASTM D1557; Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft·lbf/ft³ (2,700

kN·m/m³)). ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
3. EN 13286-2:2010; and Hydraulically Bound Mixtures—Part 2: Test Methods for Laboratory Reference Density and Water

Content—Proctor Compaction. CEN: Brussels, Belgium, 2010.

http://doi.org/10.1520/D0698-12R21
http://dx.doi.org/10.1520/D1557-12R21


Mathematics 2025, 13, 3359 32 of 34

4. ASTM D1556; Test Method for Density and Unit Weight of Soil in Place by Sand-Cone Method. ASTM International: West
Conshohocken, PA, USA, 2024. [CrossRef]

5. ASTM D6938; Test Methods for In-Place Density and Water Content of Soil and Soil–Aggregate by Nuclear Methods (Shallow
Depth). ASTM International: West Conshohocken, PA, USA, 2023. [CrossRef]

6. ASTM D6951; Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications. ASTM International:
West Conshohocken, PA, USA, 2018. [CrossRef]

7. ASTM E2583; Test Method for Measuring Deflections with a Light Weight Deflectometer (LWD). ASTM International: West
Conshohocken, PA, USA, 2020. [CrossRef]

8. ASTM E2835; Test Method for Measuring Deflections Using a Portable Impulse Plate Load Test Device. ASTM International:
West Conshohocken, PA, USA, 2021. [CrossRef]

9. Soil—Testing Procedures and Testing Equipment—Plate Load Test; DIN/Beuth Verlag: Berlin, Germany, 2012. (English translation
available).

10. Geotechnical Investigation and Testing—Field Testing—Part 2: Dynamic Probing; ISO: Geneva, Switzerland, 2005.
11. Lee, C.; Kim, K.S.; Woo, W.; Lee, W. Soil Stiffness Gauge (SSG) and Dynamic Cone Penetrometer (DCP) tests for estimating

engineering properties of weathered sandy soils in Korea. Eng. Geol. 2014, 169, 91–99. [CrossRef]
12. Kim, S.Y.; Lee, J.S.; Park, G.; Hong, W.T. Evaluation of Dynamic Resistance for Application of Portable In-Situ Device to Extra

Target Depth. KSCE J. Civ. Eng. 2022, 26, 4195–4201. [CrossRef]
13. Sun, H.; Xu, Q.; Sun, D.A.; Zhu, X. Energy-based comparison between a dynamic cone penetrometer and a motor-operated static

cone penetrometer. Soil Tillage Res. 2011, 113, 124–133. [CrossRef]
14. Farshbaf Aghajani, H.; Hatefi Diznab, M. A statistical investigation of dynamic cone penetrometer test. Int. J. Geosynth. Ground

Eng. 2023, 9, 8. [CrossRef]
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