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Abstract

Autonomous beach-cleaning robots require reliable, low-cost navigation on sand. We
study Sim-to-Real transfer of deep reinforcement learning (DRL) policies using a minimal
sensor suite—wheel-encoder odometry and a single 2-D LiDAR—on a 30 kg differential-
drive platform (Raspberry Pi 4). Two policies, Proximal Policy Optimization (PPO) and a
masked-action variant (PPO-Mask), were trained in Gazebo + Gymnasium and deployed
on the physical robot without hyperparameter retuning. Field trials on firm sand and on
a natural loose-sand beach show that PPO-Mask reduces tracking error versus PPO on
firm ground (16.6% ISE reduction; 5.2% IAE reduction) and executes multi-waypoint paths
faster (square path: 112.48 s vs. 103.46 s). On beach sand, all waypoints were reached
within a 1 m tolerance, with mission times of 115.72 s (square) and 81.77 s (triangle). These
results indicate that DRL-based navigation with minimal sensing and low-cost compute is
feasible in beach settings.

Keywords: sim-to-real transfer; deep reinforcement learning; minimal sensor suite;
PPO-mask; low-cost mobile robotics; autonomous navigation

1. Introduction

Managing plastic waste on beaches is an operational challenge: about 8 Mt of plastics
enter the oceans each year, directly impacting coastal areas [1]. Conventional cleaning
methods are labor-intensive and inefficient, motivating robotic solutions that operate on
sand with greater autonomy, efficiency, and coverage [2,3]. Existing robotic systems have
demonstrated the ability to cover large areas effectively; however, most of them are heavy,
industrial-scale machines that weigh several tons, making them costly, energy-intensive,
and difficult to deploy flexibly in diverse coastal environments.

This motivates the exploration of developing lighter, more autonomous, and efficient
robotic platforms requires careful choices in both sensing and algorithms. From the sensing
perspective, two main approaches have emerged: (i) advanced sensors such as 3-D LiDAR
and stereo cameras, which provide dense point clouds and semantic maps but entail high
cost, energy demand, and computational load that limit long-term operation in coastal
environments [4]; and (ii) low-cost configurations based on 2-D LiDAR and wheel encoders,
whose effectiveness on granular substrates remains debated [5].

From an algorithmic perspective, DRL can produce adaptive navigation policies
without explicit kinematic models, but two challenges remain: (i) the large number of
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interactions required for training, which makes the process computationally expensive;
and (ii) the simulation-to-real (Sim-to-Real) transfer gap, which is particularly acute on
sandy terrains exposed to intense solar reflectance [6,7].

Despite these challenges, recent advances in DRL are encouraging. Quiroga et al. [8]
showed that agents trained with PPO in CoppeliaSim could navigate controlled beaches
while avoiding obstacles. Kiran et al. [9] emphasized the importance of photorealistic
simulators and domain randomization in improving generalization, whereas Weerakoon
et al. [10] integrated elevation maps and visual-attention mechanisms into a hybrid DRL-
classical-control framework, improving navigation performance.

Building on these advances, we present a lightweight four-wheeled differential-drive
robot (30 kg) equipped with a minimal, low-cost sensor suite (2-D LiDAR and wheel en-
coders) and on-board computation on a Raspberry Pi 4 (Ubuntu 22.04, ROS 2 Humble [11]).
The platform is controlled by DRL policies—specifically, PPO and its masked-action variant
PPO-Mask, trained in simulation and transferred to the real robot without hyperparame-
ter retuning. This integration of accessible hardware and DRL-based navigation enables
autonomous operation on sandy terrains under real beach conditions.

In this context, the main contributions of this work are

* A complete autonomous navigation pipeline combining minimal sensing and
DRL control;

* End-to-end Sim-to-Real transfer of PPO and PPO-Mask without hyperparameter
retuning;

¢  Quantitative outdoor validation on both firm sand and natural loose-sand beaches.

This paper is organized as follows. Section 2 reviews the relevant literature on coastal
cleaning robots, Sim-to-Real navigation, and DRL. Section 3 describes the robot platform
and control architecture. Section 5 presents the DRL methods and training setup, while
Section 7 reports the evaluation and field results. Section 8 discusses the findings, and
Section 9 concludes the work with future directions.

2. Related Work

Currently, nearly 140 million tons of plastic are accumulated in water bodies such as
rivers, lakes, and oceans, and projections indicate that, without mitigation, this figure could
rise to approximately 500 million tons by 2060 [12]. The accumulation of plastic waste on
beaches poses a growing threat to coastal ecosystems, affecting not only biodiversity but
also economic activities such as tourism and fishing [13,14]. In this context, it is essential to
address three complementary lines of research: (i) the development and implementation
of robots specialized in coastal cleaning, (ii) the application of advanced autonomous
navigation methods using Sim-to-Real strategies with minimal sensory configurations, and
(iif) the incorporation of adaptive and safety-oriented frameworks in DRL.

2.1. Coastal Cleaning Robots

Coastal robotics has advanced significantly through solutions that improve collection
efficiency and operational autonomy. Current developments include intelligent detec-
tion systems such as EcoBot, which integrates YOLO-based computer vision on acces-
sible hardware [15], and robots equipped with YOLOVS5 detection that combine raking
and sifting [16]. UmiBeach employs vision and LiDAR sensors for safe operation un-
der adverse conditions [17]. In autonomous navigation, Binman combines GPS with
ROS to cover large coastal areas [18], while Hirottaro uses pole-based positioning and a
rangefinder [19]. SMURF implements nonlinear predictive control for surface cleaning of
water bodies [20]. Specialized mechanisms include a spiral-propelled amphibious robot for
intertidal zones [21], VERO with a quadruped design and vacuum cleaner [22], BeBot as a
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silent electric solution [3], SURF RAKE as a high-capacity towed system [2], and ProjectBB
for robotic swarm coordination [23].

Based on these trends, our approach adopts accessible hardware such as a Raspberry
Pi 4, which ensures compatibility with the ROS 2 Humble middleware and maintains
low energy consumption. Following the widespread use of LiDAR in coastal robotics,
we employ a single 2-D LiDAR as the primary perception sensor, combined with wheel
encoders for odometry. In addition, the variety of mechanical architectures described—
from amphibious platforms to towed systems—has informed the design of a more compact
and lightweight configuration, optimized to operate efficiently on loose sandy terrain and
intended for future integration into autonomous beach-cleaning tasks.

2.2. Sim-to-Real Navigation with Minimal Sensor Approaches

The transfer of navigation policies from simulated environments to real systems is
a promising paradigm for reducing costs and accelerating robotic implementation with
minimal sensory configurations. Recent studies have validated the use of inexpensive 2-D
LiDAR for mapless navigation, combining experience collection and fusion techniques
that accelerate convergence under localization uncertainty [24]. Successful transfers from
NVIDIA Isaac Sim to real platforms with ROS 2 have achieved performance comparable to
Nav2 [25]. Parallel actor—critic distributional architectures with exclusive laser data input
and target vectors improve generalization [26], while hierarchical reinforcement learning
(HRL) approaches implement dynamic subgoals validated on TurtleBot3 [27]. In coastal
cleanup specifically, Sim-to-Real strategies have enabled direct transfer of trained behaviors,
achieving safe navigation without post-retuning [8]. Platform-agnostic frameworks further
minimize simulation—reality discrepancies, ensuring consistent performance [6].

These advances confirm the feasibility of efficient, low-cost navigation systems,
although challenges persist on loose sand surfaces and under variable environmen-
tal conditions.

2.3. Adaptive and Safety-Oriented RL Frameworks for Dynamic Environments and Constrained
Hardware

Coastal environments present particular challenges, including dynamic terrain varia-
tions and embedded hardware constraints. Adaptive and safety-oriented frameworks have
emerged as fundamental solutions for robust operations. Continuous domain adaptation
through randomization sustains performance in the face of friction and tilt variations.
Conflict-Averse Safe Reinforcement Learning (CASRL) [28] reduces collisions by separating
critical subtasks [29]. The SafeDPA framework combines barrier functions with predic-
tive control to ensure safety under unmodeled perturbations [30], while barrier certificate
approaches guarantee stability in nonstationary dynamics [31]. Predictive safety filters
adapt policies in real time [32], and hierarchical strategies optimize multi-agent coopera-
tion [33]. Fault-tolerant control preserves performance under partial actuator failures [34],
while event-triggered control reduces computational load without compromising stabil-
ity [35]. Methods that integrate GANs with attention networks enhance detection under
adverse visual conditions [36], a critical aspect in coastal environments with frequent light
variations.

Recent advances have demonstrated the feasibility of applying Sim-to-Real strategies
to coastal navigation. However, most existing approaches still rely on costly sensors,
photorealistic simulators, or multi-sensor configurations, which restrict their scalability and
practical use in natural beach environments. This highlights the need for lightweight and
accessible platforms that can be directly validated under real conditions. In response to this
gap, our work introduces a compact and low-cost robot that combines a minimal sensor
suite (2-D LiDAR and wheel encoders) with DRL policies. By employing PPO and its
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masked variant, the system achieves autonomous navigation on both firm and loose sand,
demonstrating that reliable Sim-to-Real transfer can be accomplished without expensive
hardware or complex sensing pipelines.

3. Robot Hardware and Software Architecture

The platform is a four-wheeled differential-drive robot designed to operate on sandy
terrain. Its welded structural-aluminum chassis weighs approximately 30 kg and has a
footprint of 1.00 m x 0.70 m, combining rigidity with low weight and maneuverability.
Mobility is provided by low-pressure polyurethane wheels (0.49 m diameter and 0.23 m
width) that enhance traction while reducing ground pressure; each wheel supports up to
120 kg, allowing future payload integration. All electronic components are housed in an
IP55-protected compartment, and a dedicated space is reserved for the cleaning module to
be incorporated in the next stage of the project. Figure 1 shows the prototype during its
first field tests on the beach, together with its CAD schematic.

B N

U A 3

(a) (b)

0.70m

1.00m

o CD
I
1l

(d)

Figure 1. Four-wheel differential-drive robotic platform during its initial beach trials: (a) top view
showing the aluminum chassis and the layout of the electronic components; (b) rear view highlighting
the electronics compartment and sensor mounting; (c) perspective view illustrating the overall design
and the low-pressure wheels for sand mobility; (d) CAD drawing with dimensions and wheel
arrangement.

While Figure 1 provides a visual overview of the prototype, Table 1 complements it
by consolidating the main technical specifications. The table lists key parameters such as
dimensions, weight, motors, batteries, sensors, and computation units, offering a concise
reference for the detailed description that follows.
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Table 1. Technical specifications of the beach-cleaning robot prototype.

Parameter Specification

Chassis Welded structural-aluminum frame, IP55 electronics compartment

Dimensions 1.00m x 0.70 m footprint

Weight ~30 kg (without payload)

Wheels Low-pressure polyurethane, diameter 0.49 m, width 0.23 m, traction optimized for sand
Motors Two 24 V DC gear motors, 100 kg-cm torque, front-wheel differential drive

Encoders Integrated optical encoders on each motor

Motor drivers

BTS7960 H-bridges, one per motor

Low-level ESP32 with micro-ROS for motor control and sensor feedback

High-level Raspberry Pi 4 (Ubuntu 22.04, ROS 2 Humble)

Sensors RPLIDAR S2 (2-D LiDAR, 30 m range, 32 kHz, 0.1125° resolution) + wheel encoders
Power supply Two 12 V, 18 Ah batteries in series (24 V nominal), ~3 h autonomy

Power distribution

Three DC/DC converters: (i) 5V, 20 A for Raspberry Pi 4; (ii) 12 V, 3 A for Wi-Fi router; (iii) 5 V,
3 A for ESP32 and electronics

Connectivity

2.4 GHz Wi-Fi router, external PC for mission dispatch and monitoring

Future expansion

Reserved compartment for cleaning module

To provide a clearer understanding of the platform, the following subsections describe

the hardware and software components in detail, highlighting how sensing, actuation,

computation, and communication are integrated into a unified architecture.

(@)

(b)

Hardware:

The traction system relies on two 24 V DC gear motors (100 kg-cm torque) with
integrated optical encoders, selected for their balance between torque and efficiency
in sandy environments. Motor control is performed by two BTS7960 H-bridge
drivers, which offer robustness against high current peaks while remaining cost-
effective. An ESP32 microcontroller was adopted as the low-level controller due to
its native support for micro-ROS [37], ensuring seamless communication with ROS 2
nodes. The power supply is based on two 12 V, 18 Ah batteries in series, providing
a 24 V nominal voltage and approximately 3 h of autonomy, which was deemed
sufficient for experimental field trials while maintaining a manageable total weight
of 30 kg. The power distribution unit incorporates three DC/DC converters to
decouple loads, preventing voltage drops in critical modules such as the Raspberry
Pi 4. Environmental perception relies on an RPLIDAR S2 2-D LiDAR [38], offering a
30 m range, 32 kHz sampling rate, and 0.1125° angular resolution. This model is
specifically designed for outdoor use, ensuring robust performance under direct
sunlight, airborne dust, and reflective sandy surfaces, which makes it well-suited
for real beach conditions. High-level processing is carried out by a Raspberry Pi 4,
which executes the trained DRL policies, while wireless connectivity via a 2.4 GHz
router allows remote mission dispatch and monitoring.

Software:

The high-level computation is handled by a Raspberry Pi 4 running Ubuntu 22.04
with ROS 2 Humble, which coordinates sensing, state estimation, and autonomous
navigation. The trained DRL policies (PPO and PPO-Mask) are deployed as ROS
2 nodes, publishing geometry_msgs/Twist commands derived from 2-D LiDAR
scans and wheel-encoder odometry. Low-level actuation and motor feedback are
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executed on the ESP32 using micro-ROS, enabling real-time communication with
the motor drivers and ensuring precise control. This division between high-level
decision-making (navigation policies) and low-level execution (actuation and sens-
ing) provides both modularity and reliability. Wireless connectivity via a 2.4 GHz
router allows remote operators to dispatch missions and monitor robot status in real
time, facilitating field experiments in beach environments.

Figure 2 illustrates the overall hardware and software architecture of the robot. The
diagram highlights the interaction between three main subsystems: (i) the low-level con-
troller, composed of the ESP32 microcontroller and the BTS7960 motor drivers, responsible
for actuation and encoder feedback; (ii) the high-level controller, implemented on the
Raspberry Pi 4, which processes LiDAR scans, integrates odometry, and executes the DRL
navigation policies; and (iii) the power distribution unit, which regulates the 24 V battery
supply through multiple DC/DC converters to feed each component with its required
voltage level. In addition, the figure emphasizes the role of the Wi-Fi router in establishing
wireless communication with an external computer for mission dispatch and monitoring.

Low-level Controller

Power

Regulation ¢
Unit
= Power Distribution Unit
v
n 24V 24 V Battery
3 DC Motor |[* (2 x 12 V series)
g Motors DriversJ
L
Regulator
High-level Controller
Regulator
2D LiDAR
sv Signals and Interfaces
> Raspberry Pi4 |« MPower
External L ) MDigital I/0
Computer IU§B
12V BMMicroROS
D i Wi-Fi Router [« Wi-Fi

Figure 2. General hardware and software architecture of the robot, including the low-level controller
(ESP32 and BTS7960 driver), the high-level controller (Raspberry Pi 4 and 2D LiDAR), and the power
distribution unit (batteries and DC/DC regulators).

4. Differential Kinematic Model and Navigation Geometry

The robot’s motion follows a differential-drive kinematic model [39], which relates
the commanded linear and angular velocities to the evolution of its planar position and
heading. The resulting state—space relations are expressed in Equations (1)-(3).

X =wvcosb, (1)
y = vsind, 2
0 =w, 3)
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where (x,y) denotes the robot’s position in the global frame, 6 is the heading angle mea-
sured counter-clockwise, v is the linear velocity (ms~!), and w is the angular velocity
(rads™1).

To guide the robot toward a target point (xip,Ytp), the geometric errors that
quantify the remaining distance and the misalignment with the goal are defined in
Equations (4)—(6) [40]:

a=tan"! (ytp _ ys), 4)
ti — Xs

d= \/(xtp —X5)? + (]/tp —Ys)?, ®)

e=a—0, (6)

where (xs, ys) denotes the current robot position, d is the Euclidean distance to the target
(m), a is the bearing angle, and e represents the difference between the desired and current
headings.

These expressions form the mathematical backbone of the navigation system and are
embedded in the DRL environment. Kinematics model and sensor validation was first
carried out by teleoperating the platform connected to ROS 2, confirming real-time motor
response as well as correct encoder and LiDAR readings.

5. Deep Reinforcement Learning

In deep reinforcement learning, an agent interacts with an environment modeled as a
Markov decision process (S, A, P, R, 7). At each discrete time step t, the agent observes
a state s; € S, selects an action a; € A according to its policy 7ty (a¢|st), receives a reward
r¢ = R(s¢, at), and transitions to sy, 1 with probability P(-|s¢, a;), as illustrated in Figure 3.

Environment

‘ \

|Action| | State |Reward |

‘ Agent ‘

Figure 3. Agent-environment interaction loop in DRL.

The objective is to maximize the expected return G; defined in Equation (7):

o)

Gt = Z ’YkrtJrkr 0< v < 1/ (7)
k=0

where 1 is the discount factor. A value of 7y close to 1 makes the agent far-sighted, placing
nearly equal emphasis on distant rewards, whereas a smaller 7 induces short-sighted
(myopic) behavior by weighting immediate rewards more heavily. The discount factor
also ensures convergence of the infinite series in Equation (7), resulting in a well-defined
optimization problem.
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For the beach-cleaning robot—where wheel-sand dynamics and moving obstacles are
difficult to model—DRL is particularly suitable, as it learns policies directly from experience
and adapts to unpredictable variations.

5.1. Proximal Policy Optimization

PPO [41] was adopted for its balance between training stability and computational
efficiency. The clipped surrogate objective, shown in Equation (8), constrains the magnitude
of each policy update:

Lclip(g) = Et[min(rt (9) At, Clip(l’t(g), 1+ 8) At)], (8)

where r(0) = mg(ar | s¢)/me,,(ar | st) is the likelihood ratio between the new and old
policies; A; is the advantage estimated via Generalized Advantage Estimation (GAE); and
¢ is the clipping threshold. GAE interpolates between Monte Carlo and TD(1) returns
through the parameter A € [0, 1], reducing variance without introducing excessive bias,
while the clip operator constrains the updated policy to a proximal region that preserves
training stability.

The training loop comprises four stages:
(@)  Collection: Generate trajectories with the current policy for T steps.
(b) Estimation: Compute Ay from the rewards and the value critic.
(c) Optimization: Perform stochastic gradient descent over mini-batches and multiple

epochs, applying early stopping if the KL divergence exceeds a threshold.

(d)  Iteration: Repeat the process until the average return converges.

5.2. PPO-Mask: Masking Invalid Actions

The discrete action space includes commands that, in certain states, are physically
infeasible (e.g., a turn exceeding the robot’s minimum turning radius). The PPO-Mask
variant [42] addresses this issue by subtracting a large negative constant from the logits of
invalid actions before the softmax is applied, as shown in Equation (9):

exp(za = M Lggga,,(s)})

Yo exp(zp = Mg a )
be A

m(a | s) =

©)

where M = 10® [42], ensuring that masked actions receive negligible probability without
risking floating-point precision errors. Here, Ay, (s) denotes the set of admissible actions
in state s, z, is the pre-softmax logit for action a, and 1 ) is the indicator function. Because
the term — M is extremely negative, the softmax assigns an effectively zero probability to
invalid actions, and their gradients vanish (V, log my(a | s) = 0).

Both PPO and its masked variant were selected as the learning algorithms for this
work. PPO is widely recognized for its training stability and strong performance in robotic
navigation tasks [8,9], and it had already shown favorable results in our previous studies on
autonomous navigation [8]. In contrast, PPO-Mask was incorporated based on its reported
ability to filter out infeasible actions and improve reliability in complex terrains, making it
a promising candidate for Sim-to-Real transfer in sandy environments.
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6. Experimental Setup for Agent Training

The training environment consisted of a 20 m x 20 m Gazebo world, as illustrated in
Figure 4. The world was procedurally configured to increase task complexity and improve
the robustness of the learned policies, for which it was populated with two types of static
obstacles, cylinders (0.60 m in diameter and 0.80 m in height) and cuboids (0.80 m x 1.00 m
x 0.60 m), all sufficiently large to be reliably detected by the 2-D LiDAR. At the beginning
of each training episode, these obstacles were randomly placed within the environment to
ensure variability across episodes and to prevent the agent from memorizing their locations.

To approximate the interaction between the wheels and sand, the simulation employed
friction and contact stiffness parameters rather than granular deformation or terrain height
variations. The robot model preserved physical properties consistent with the real prototype
(mass, dimensions, and wheel geometry), using static and kinetic friction coefficients
p1 = 1.2 and pp = 1.0, contact stiffness k, = 500,000, and damping k; = 1.0.

Within this environment, policies were trained entirely offline in Gazebo and later
deployed on the Raspberry Pi 4, thereby keeping on-board computation minimal while
ensuring consistency between simulated and real-world dynamics.

(@) (b)

Figure 4. Training environment visualization in RViz and Gazebo. (a) RViz interface showing the

robot’s starting position and target point. (b) Gazebo scene with LiDAR-based obstacle detection and
four labeled obstacles within the sensor’s perception area.

6.1. Gymnasium Environment

The environment was designed to encourage obstacle-avoidance behavior. Target
points were spawned behind obstacles relative to the robot’s initial pose, forcing it to detour
around them to reach the goal. This strategy prevented trivial straight-line paths and
promoted more robust navigation policies.

The implementation followed the Gymnasium API, providing reset(), step(),
render (), and close() methods to ensure reproducibility and enable comparison with
other DRL platforms. We employed the PPO algorithm from Stable-Baselines3 (SB3) [43],
recognized for its robustness and efficiency in continuous control tasks, together with the
PPO-Mask variant from SB3-Contrib [44]. To clarify how these algorithms interact with the
training setup, the following subsections describe (a) the observation and action spaces
that define the agent’s interaction with the environment, and (b) the reward function that
guides learning by balancing goal-reaching efficiency with obstacle avoidance.
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(@) Observation and Action Spaces: The observation space provides a rich set of

sensory and contextual data that enables the robot to make informed decisions
during navigation. By combining LiDAR readings, the direction toward the goal,
and the robot’s kinematic states, it yields a comprehensive representation of both
the environment and the agent itself.
The action space is discrete because the physical robot demonstrated greater stability
with quantized commands, as confirmed by teleoperation tests. This choice facili-
tates the direct transfer of policies from simulation to hardware, thereby improving
robustness. The complete definitions of both spaces are given in Tables 2 and 3.

Table 2. Observation space used by the DRL policy.

Component Description Dimension Range

LiDAR data Sector-based distance readings 36 Normalized [0, 1]
Distance to goal ~ Euclidean distance to the target 1 Normalized [0, 1]
Direction vector ~ x and y components of the goal vector 2 Normalized [-1, 1]
Linear velocity Current forward speed 1 Fraction of vmax = 0.8 ms™!
Angular velocity =~ Current rotational speed 1 Fraction of wmax = 0.6 rads ™!
Total 41

Table 3. Action space used by the DRL policy.

ID Description Command v (ms™1) w (rads™1)
0 Move forward Forward translation 0.8 0
1  Turn left Counter-clockwise turn 0 +0.6
2 Turnright Clockwise turn 0 —0.6

Reward; =

(b) Reward function: The reward function combines terminal bonuses, which are
triggered by the completion of an episode, with dense components that guide
the robot during navigation. Terminal rewards provide clear learning signals at
the end of an episode, while dense rewards shape the trajectory by penalizing
unsafe or inefficient behaviors and reinforcing desirable actions. This hybrid design
accelerates policy convergence and promotes reliable navigation in challenging
environments, as summarized in Equation (10).

+200, di <dgoal,
_150/ dmin < dCOH/
—100, t > max_steps, (10)

8 pr + 30 cos by — 1.5 |w;| — 0.8 1{|v¢| < 0.03}

-5 (%) + 2 1{dmin > dsate} +31{|6¢| < 0.1}, otherwise.
The terminal terms correspond to a success reward of +200 when the robot reaches
the goal, a collision penalty of —150, and a timeout penalty of —100 when the episode
ends without success. The dense terms act at each timestep: the progress term p; and the
alignment term v; cos 6; encourage forward motion and goal-oriented heading; the angular-
rate penalty |w;| discourages sharp turns; and the idling penalty 1{|v¢| < 0.03} prevents
stagnation. Collision avoidance is promoted by the shaping term %, which penalizes
proximity to obstacles, while the safety bonus 1{dmin > dsafe } rewards maintaining a safe
distance. Finally, the orientation bonus 1{|6;| < 0.1} reinforces accurate heading alignment.
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Together, these components balance efficiency, safety, and robustness, enabling successful
Sim-to-Real transfer in both firm ground and beach environments.

6.2. Training

The simulation environment was implemented entirely in Python 3, combining Gazebo
for physics, ROS 2 Humble for inter-node and sensor communication, and Gymnasium to
expose an API compatible with DRL algorithms.

On this infrastructure, we employed Stable-Baselines3 to train the standard PPO
algorithm, and SB3-Contrib to train the masked variant, PPO-Mask. All experiments were
carried out on an Ubuntu 22.04 workstation equipped with a Ryzen 7 3700X CPU and an
RTX 3060 GPU.

Table 4 summarizes the hyperparameter ranges explored during training; each agent
completed 600,000 training steps in approximately three hours.

Table 4. Explored hyperparameter ranges.

Parameter Criterion PPO Range Final PPO PPO-Mask Range Final PPO-Mask
n_steps Max. reward {1024, 2048, 4096} 4096 Inherited 4096
batch_size Max. reward {128, 256, 512} 512 Inherited 512
gae_lambda Max. reward 0.85-0.96 0.85 Inherited 0.85
gamma Max. reward  0.90-0.99 0.99 Inherited 0.99
learning_rate Max. reward 1 x 10743 x 107 1x1074 Inherited 1x1074
ent_coef Max. reward 0.01-0.05 0.05 Inherited 0.05
clip_range Default - 0.20 Default 0.20
n_epochs Default - 10 Default 10

Table 5 compares the performance of the two algorithms explored during training:
PPO and PPO-Mask. When comparing the two methods, an apparent discrepancy arises:
PPO achieved the highest success rate (94.3%), yet its average reward was lower than that
of PPO-Mask. This outcome is explained by the reward function defined in Equation (10),
which evaluates not only goal completion but also trajectory efficiency, motion stability,
and mission time. PPO reached the destination more frequently, but at the cost of longer
trajectories and higher control effort, leading to greater penalties. In contrast, PPO-Mask
obtained more direct and stable routes with fewer oscillations and unnecessary corrections,
which favored higher cumulative rewards per episode.

Table 5. Comparison of training performance metrics for PPO and PPO-Mask.

Algorithm Episodes Success Rate Mean Reward Max Reward Std. Dewv.

PPO 103,923 94.3% 203.97 496.82 84.14
PPO-Mask 15,900 86.9% 277.74 1585.85 190.75

Figure 5 shows that the standard PPO policy converged at approximately +200 points
per episode, whereas PPO-Mask achieved about +300 points with lower variance, confirm-
ing that action masking accelerated convergence and improved stability.
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Training Performance Comparison: PPO vs PPO Mask

300

200

Reward

100

—— PPO
~100 —— PPO Mask
0 2000 4000 6000 8000 10,000 12,000 14,000 16,000

Training Episodes

Figure 5. Training reward curves: PPO versus PPO-Mask.

7. Experiments and Results

This section reports the experiments conducted to evaluate the Sim-to-Real transfer of
the proposed policies. The trained policies were deployed on the physical robot without
modifying any hyperparameters, the only adjustment concerned the episode duration: in
simulation, timesteps per episode were shortened to accelerate training, whereas in reality
they were extended to account for the slower dynamics of physical execution.

7.1. Field Experiments on Firm Sand

To verify whether the learned policy could be effectively transferred from simulation
to reality, experiments were first conducted on firm sand. Figure 6 shows the firm-ground
test environment where these initial trials took place, aimed at providing a preliminary
assessment of the robot’s performance and validating the proper transfer of the policy
before deployment in more demanding scenarios such as the beach.

(b)

Figure 6. Views of the firm-ground test environment and the robotic platform. (a) Front view of the
robot positioned on the terrain. (b) Wide perspective of the test area, showing the ground conditions
and available space for evaluation.

7.1.1. Experiment 1—Simple Navigation Task

The first experiment evaluated the policies trained in simulation, with moving the
robot from the origin (0, 0)m to a target located at (3, 3)m on an obstacle-free plane.
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This experiment aimed to verify whether the policies learned in simulation could be
successfully transferred to the real robot, assessing their ability to generate stable and
accurate trajectories in the absence of elements interfering with its movement.

Figure 7 presents the trajectories obtained in this experiment for both the simulation
and the physical robotic platform, enabling a direct comparison between the PPO and
PPO-Mask policies.

Simple Navigation Task: PPO vs PPO Mask

=== PPO Simulated

== == PPO Real Robot

=== PPO Mask Simulated
PPO Mask Real Robot

Start position

Goal tolerance circle (r = 1.0m)

X Position [m]

Target goal

PPO Sim end (0.76m)

PPO Real end (0.98m)

PPO Mask Sim end (0.99m)
PPO Mask Real end (0.99m)

fttt=]e

4 3 2 1 0
Y Position [m]

Figure 7. Simple navigation task: comparison between PPO and PPO-Mask (simulation vs. real robot).

The performance gap is evident in the trajectories of Figure 7. In both simulation
and the physical robotic platform, PPO-Mask produced straighter paths with less lateral
oscillation than PPO. This improvement is attributed to masking kinematically infeasi-
ble actions during sampling, which prevented spasmodic corrections and yielded more
coherent control commands.

To quantify these differences, four classical control indices were used—the Integral of
Absolute Error (IAE), the Integral of Squared Error (ISE), the Integral of Time-weighted
Absolute Error (ITAE), and the Integral of Time-weighted Squared Error (ITSE)—defined
in Equations (11)—(14) [45]. In all expressions, the error e(t) denotes the instantaneous
distance between the robot center and the target point. These indices quantify cumulative
tracking accuracy: IAE and ISE measure overall position error, whereas ITAE and ITSE
additionally weight that error by time, penalizing late or persistent deviations.

TAE — /0 le(t)| dt, (11)
ISE — /O S dt, (12)
ITAE — /Ooot|e(t)\dt, (13)
ITSE — /0 Tre(t) dt. (14)

As shown in Table 6, the simulation results indicate that both policies followed nearly
straight trajectories; however, PPO-Mask achieved the lowest IAE, ITAE, and ITSE, whereas
PPO attained the minimum ISE. On the real robot, the absolute values increased—owing to
slippage and sensor noise—yet the relative trend persisted: PPO-Mask reduced ISE by 17%,
IAE by 5%, and ITSE by 15% compared with PPO, confirming more accurate goal tracking.
PPO retained a slight (=2.6%) advantage in ITAE, suggesting marginally faster initial
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corrections. Overall, these results confirm that action masking improves smoothness and
Sim-to-Real robustness, although the magnitude of the benefit depends on the chosen metric.

Table 6. Performance index comparison between PPO and PPO-Mask in real and simulated
environments.

Real Simulated
Index
PPO PPO-Mask PPO PPO-Mask
ISE 434.99 362.85 73.35 73.79
IAE 135.93 128.92 2451 22.91
ITSE 6932.79 5869.30 203.90 200.16
ITAE 2601.61 2669.86 89.73 73.77

Bold values indicate the best performance (a lower index indicates better performance).

7.1.2. Experiment 2—Waypoint-Based Path Following

This second experiment evaluated a more demanding task: closed-loop path following
defined solely by discrete waypoint sequences. Each waypoint was assigned a tolerance
radius of 1 m, equivalent to the robot’s effective clean-up area; once inside this radius, the
controller automatically advanced to the next goal. The entire route was completed without
reinitializing the policy, enabling assessment of navigation consistency over extended
trajectories. Two reference geometries were tested, a square and a triangle, imposing 90°
and 120° turns, respectively, with different leg lengths.

(a) Square path: The results in Figure 8 show that, in simulation, PPO-Mask generated
straighter legs between waypoints and turns with slightly larger radius, achieving
smoother transitions than the PPO policy. After transfer to the physical robotic
platform, firm sand introduced additional slip—particularly after each 90° turn—
yet the relative superiority of PPO-Mask persisted: it avoided overshooting the
vertices, maintained straighter lines, and spent less time within each waypoint’s
tolerance circle, resulting in more efficient navigation.

Square Path Following: PPO vs PPO Mask

e PPO Simulated

== == PPO Real Robot

= PPO Mask Simulated
PPO Mask Real Robot

Waypoints

X Position [m]

WP tolerance circle (1.0m)
PPO Sim endpoint

PPO Real endpoint

PPO Mask Sim endpoint
PPO Mask Real endpoint

ARENl

Y Position [m]

Figure 8. Square path following: comparison between PPO and PPO-Mask (simulation vs. real robot).

Table 7 quantitatively confirms the advantage of PPO-Mask. In simulation, it com-
pleted the square in 24.42 s with 235 steps, whereas PPO required 27.89 s and 270 steps—
improvements of 12.4% in time and 13% in step efficiency. The trend held in the real
environment, where PPO-Mask finished in 103.46 s compared to 112.48 s for PPO (~8%
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faster). Moreover, PPO-Mask achieved higher mean rewards in both settings, namely, 7.94
in simulation and 4.13 on hardware, compared to 7.12 and 3.75 for PPO, reflecting more
effective and consistent navigation.

Table 7. Performance comparison in simulated and real environments for the square route.

Policy Metric Simulated Real
Time (s) 27.89 112.48
PPO Steps 270 594
Mean reward 7.12 3.75
Time (s) 24.42 103.46
PPO-Mask Steps 235 569
Mean reward 7.94 413

The best value for each metric is highlighted in bold (lowest values are better, except for mean reward where
higher is better).

(b)  Triangular path: In this case, the triangular route consisted of three vertices spaced
approximately 4 m apart, resulting in wide turns of about 120°. This geometry posed
a different challenge from the square path, as the wider corners required prolonged
maneuvers and more precise control of angular velocity during each transition. The
results in Figure 9 show that, in both simulation and real-world testing, PPO-Mask
achieved lower integrated errors, demonstrating better handling of wide turns. The
masked policy produced commands that enabled smoother transitions without
compromising tracking accuracy—a benefit that became more evident on hardware,
where sand dynamics amplified control errors.

Triangle Path Following: PPO vs PPO Mask

s e PPO Simulated
== == PPO Real Robot

/ C‘ PPO Mask Simulated
3 A PPO Mask Real Robot
N
2
‘ Waypoints
1 WP tolerance circle (1.0m)
PPO Sim endpoint

0

u PPO Real endpoint

PPO Mask Sim endpoint
PPO Mask Real endpoint

X Position [m]

sret |1

>Y Position [m]

Figure 9. Triangle path following: comparison between PPO and PPO-Mask (simulation vs. real robot).

Table 8 quantifies these findings. In simulation, PPO-Mask completed the triangle
in 22.75s and 219 steps, outperforming PPO—26.20 s and 254 steps—equivalent to 13.2%
faster and 13.8% more step-efficient.

In the real environment, however, PPO achieved a slightly shorter total time (104.37 s
vs. 116.71s) and fewer steps. PPO-Mask nonetheless yielded smoother, more curvilin-
ear trajectories. This smoothness proved advantageous during field tests on physically
uneven sand, even though the simulator remained flat. The higher mean reward of PPO-
Mask in both settings (8.25 and 4.45 vs. 7.38 and 3.92) further confirmed its robustness on
demanding paths.
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Table 8. Performance comparison in simulated and real environments for the triangular route.

Policy Metric Simulated Real
Time (s) 26.20 104.37
PPO Steps 254 581
Mean reward 7.38 3.92
Time (s) 22.75 116.71
PPO-Mask Steps 219 638
Mean reward 8.25 4.45

The best value for each metric is highlighted in bold (lowest values are better, except for mean reward where
higher is better).

7.1.3. Experiment 3—Dynamic Obstacle Avoidance

The third experiment evaluated the policy’s capability to react to unforeseen obstacles
that suddenly appeared in the planned path. In simulation, the term dynamic obstacle
was used in a spawn-only sense (the obstacle appeared after the episode started but then
remained stationary); in the real-world test, the obstacle was truly moving (a pedestrian
crossing the path). This sudden appearance forced the policy to detect it solely from the
360° LiDAR range data, assess collision risk, and replan its trajectory to avoid impact.

The robot started at position (0,0) m with a target at (10,0) m, initially following a
straight path. After advancing a few meters, the obstacle appeared directly in its route, as
illustrated in Figure 10. The policy had no prior information about the obstacle’s presence
or location and had to adapt its trajectory in real time to reach the goal safely.

R
A R Al

Figure 10. Real-world sequence in which a pedestrian interrupts the robot’s path (illustrative, not
to scale).

Figure 11 compares the resulting trajectories. In simulation, PPO skirted the obstacle
via the positive y half-plane, reaching the goal with a slightly oscillatory path; by contrast,
PPO-Mask executed an earlier avoidance maneuver in the negative half-plane, maintaining
a larger clearance. When the policies were transferred to the robotic platform, PPO broadly
reproduced its simulated trajectory, whereas PPO-Mask behaved more stably and smoothly,
avoiding the obstacle without abrupt corrections.

Although both policies reached the goal within the 1.0 m threshold, they exhibited
different navigation styles: PPO-Mask favored wider, safer paths, prioritizing stability and
distance from obstacles—an advantage in real beach scenarios where operational safety
is paramount.
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Dynamic Obstacle Avoidance: PPO vs PPO Mask
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Figure 11. Dynamic obstacle avoidance with PPO and PPO-Mask in simulation and real-world tests.

Overall, the experiments demonstrated that the integration of Gazebo, Gymnasium,
and Stable-Baselines3 enabled the successful transfer of DRL-based navigation policies
to the physical robotic platform. PPO-Mask achieved the best integral scores, followed
more direct trajectories, and maintained its superiority even on firm sand terrain, reducing
the Sim-to-Real gap without additional tuning. These results validated the feasibility of
achieving reliable autonomous navigation on soft substrates using DRL in combination
with a minimal sensor suite.

7.2. Field Experiments on the Beach

From the firm-ground experiments, PPO-Mask emerged as the policy with the best
performance and was therefore selected for field testing under real beach conditions.
This stage is particularly important as it evaluates the system in the environment for
which it was originally designed, where additional phenomena such as variable humidity,
irregular compaction, and intermittent slippage directly affect traction and odometry
accuracy. Figure 12 illustrates the real-world environment where the field experiments
were conducted.

(@) (b)

Figure 12. Beach test scenario used for the evaluation of PPO-Mask. (a) Aerial view of the Playa
del Deporte in Vifia del Mar. (b) Perspective view of the surroundings where the field experiments
were conducted.
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The experiments were carried out at Playa del Deporte in Vifia del Mar, Chile, because
it is a representative coastal area of the region and for its logistical accessibility, which
facilitated field trials under realistic operating conditions.

Waypoint-Based Path Following Experiments

To validate the system, two waypoint-based navigation patterns were tested—a square
and a triangle—replicating the experiments previously conducted on firm ground but now
under real beach conditions with reduced traction and a higher likelihood of slippage.
These trajectories enabled evaluation of the robot’s ability to handle sharp 90° (square) and
120° (triangle) turns when irregular terrain affected odometry accuracy. They were also
chosen because such routes will later represent the typical cleaning paths to be executed
once the cleaning module is integrated.

(a) Square path

Unlike the firm-ground experiments, which evaluated a 3 m x 3 m area, in this case,
the robot followed a 4 m x 4 m square path with four waypoints and an arrival tolerance
of 1 m, corresponding to the target area for future cleaning tasks. As in the firm-ground
trials, reaching this area was considered successful mission completion. Figure 13 shows
the trajectory executed on sand. The accumulation of odometry drift and slight skidding at
the corners produced small deviations from the ideal route, although the robot successfully
reached all waypoints within the tolerance zone. As reported in Table 9, under ideal
conditions, the total path length would be 16.0 m; however, the actual distance traveled
was 17.32 m, representing an 8.25% excess. This increase reflected corrective maneuvers
and reduced tracking precision due to the interaction with loose sand.

Square Path Following: PPO Mask

=== PPO Mask Trajectory

[ J Start Position

Waypoints

—— WP Tolerance circle (1.0m)
‘ € End Point

o

X Position [m

6 5 4 3 2 1 0 -1 -2
Y Position [m]

Figure 13. Square Path Following on the Beach.

(b) Triangular path

In this case, the triangular pattern used on firm ground was replicated, with turns
of approximately 120° and three waypoints, maintaining the same 1 m arrival tolerance
corresponding to the target area for future cleaning tasks. As in the firm-ground trials,
reaching this area was considered successful mission completion. Figure 14 presents the
trajectory executed by the robot, showing that although occasional skidding occurred
during the turns, the system completed the route without leaving the operational area.
As shown in Table 9, the ideal path length for this configuration was 10.25 m, whereas
the robot traveled 12.44 m, representing a 21.4% excess. This increase was explained by
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trajectory adjustments required to maintain orientation and compensate for deviations
during the inclined segments.

Triangular Path Following: PPO Mask

! .

PPO Mask Trajectory

Start Position

Waypoints

WP Tolerance circle (1.0m)
End Point
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5 4 3 2 1 0 -1 -2
Y Position [m]

Figure 14. Triangle path following on the beach.

Table 9 summarizes the average results obtained for each trajectory pattern. The
reported metrics include (i) total mission time from the start until the last waypoint was
reached, (ii) the distance traveled by the robot along the executed trajectory, (iii) the ideal
distance according to the geometric reference path, and (iv) the final error, defined as the
Euclidean distance between the robot’s final position and the corresponding target point in
the planned route.

Table 9. Mission performance metrics for the beach experiments.

Pattern Mission Time [s] Distance [m] Ideal Distance [m] Final Error [m]
Square 115.72 17.32 16.00 0.99
Triangle 81.77 12.44 10.25 0.94

Final error is computed as the Euclidean distance between the robot’s final position and the target point of the
planned route.

As observed in the beach tests, the system was able to accurately execute waypoint-
based routes even under loose sand and low-traction conditions, validating one of the
project’s key objectives: controlled and repeatable motion in real beach environments.
Despite challenges such as slippage and odometry drift, all routes were successfully com-
pleted. As in the firm-sand experiments, these results confirm that effective Sim-to-Real
transfer can be achieved with a minimal sensor suite and DRL-based navigation policies,
providing a solid foundation for the future integration of the cleaning module.

8. Discussion

In this work, PPO and PPO-Mask were selected as the main training algorithms due
to their stability, computational efficiency, and our team’s prior experience in Sim-to-Real
applications. As an initial reference, classical controllers inspired by Braitenberg and Villela
were also explored. Although simple and computationally inexpensive, these controllers
exhibited low stability and adaptability on sand and were therefore discarded. Consistently
with this decision, the system design prioritized a minimal sensor suite (wheel encoders
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and a single 2-D LiDAR), with the objective of demonstrating that robust Sim-to-Real
transfer can be achieved without relying on more costly and complex sensor configurations.

Simulation experiments showed that PPO-Mask outperformed PPO in most error
indices, significantly reducing mission times and the number of control steps, while gener-
ating more stable and safer trajectories when navigating around obstacles. These results
were replicated on the real robot operating on firm ground, confirming that action masking
provides additional regularization and robustness.

Based on these results, PPO-Mask was selected as the best-performing model for beach
validation. Under real conditions, with variations in sand moisture and compaction, the
system successfully completed all planned trajectories in a stable manner, confirming the
feasibility of defining work cells and systematically covering them for beach-cleaning
applications.

From this point, two directions are identified to further extend the system'’s scope:
(i) incorporating more realistic terrain models (granular dynamics or digital elevation
models) to capture slope- and compaction-dependent effects and improve the fidelity of
Sim-to-Real transfer; (ii) integrating the cleaning module developed by the physics and
chemistry team, which will apply a liquid agent onto the sand surface in each cleaning cell
of approximately 1 m?, with each waypoint defining the center of such a cell. This modular
structure enables the robot to evolve from validated autonomous navigation toward the
effective execution of beach-cleaning tasks.

Overall, these results consolidate the feasibility of autonomous beach navigation with
accessible, low-cost hardware and outline a path toward more complete systems that
integrate both greater simulation realism and effective field-cleaning capabilities.

9. Conclusions

This work demonstrated that reliable Sim-to-Real transfer is achievable for au-
tonomous beach navigation using only wheel encoders and a 2-D LiDAR. Policies trained
entirely in Gazebo were deployed on the physical robot without hyperparameter retuning,
achieving stable trajectories on both firm sand and natural beach conditions.

Among the algorithms tested, PPO-Mask consistently outperformed PPO, producing
smoother trajectories, higher stability, and improved robustness under challenging sandy
conditions. These improvements were evident not only in simulation but also during
real-world experiments on both compact terrain and natural beach sand, validating the
ability of action masking to enhance policy regularization and safety.

Beyond these algorithmic results, this study highlights that autonomous navigation in
beach environments does not require complex or expensive sensor configurations. Instead,
the proposed framework shows that accessible components, combined with carefully
designed DRL strategies, can deliver reliable performance under demanding outdoor
conditions. This minimalist philosophy reduces costs, power consumption, and integration
complexity, while still enabling reliable Sim-to-Real transfer.

Looking ahead, future developments will build on this foundation by integrating the
cleaning module and exploring complementary sensor configurations, always preserving
the minimalist design philosophy. In this way, the contribution consolidates the viability of
scalable robotic solutions to address coastal pollution challenges.
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