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Memory effect on gas percolation in saturated porous media
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This work investigates the path of gas locally injected and rising through a water-saturated porous medium.
Gas migration through the pores network is modeled using a Gaussian distribution of capillary overpressure
superimposed on a linear pressure gradient induced by gravity. Previous studies have shown that the super-
position of individual gas pathways significantly affects the overall invasion morphology, impacting various
practical applications. The originality of the present simulation lies in incorporating the effect of prior pathways
on subsequent ones, thereby accounting for the system’s memory. The final invasion zone morphology, shaped
by multiple gas pathways, is quantified as a function of the memory effect, ranging from a diffusivelike invasion
to a meandering progression when the influence of prior paths is substantial. Notably, we find that the probability
of revisiting previously occupied sites, which quantifies the tendency of gas to follow an established path, follows
a logistic function.
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I. INTRODUCTION

Immiscible fluid flow in saturated porous media is a long-
standing problem that has drastic importance not only in
fundamental physics, but also in applications. Fluid transport
through such heterogeneous media are encountered in natural
or industrial processes, ranging from petroleum and chemical
engineering, hydrology, soil remediation, and powder met-
allurgy, to large-scale gas release and its impact on climate
[1–7]. Due to the multiscale, heterogeneous nature of the
porous media, quantifying and predicting fluid propagation in
these environments has remained, up to now, a major chal-
lenge shared by many communities, from geosciences to the
physics of disordered media [2,8].

A simple approach to model fluid migration through a
rigid porous medium is to consider propagation on a two-
or three-dimensional network. The nodes of this network are
the interstitial pores through which the fluid propagates. The
challenge then lies in defining the nodes properties which
will drive the fluid invasion. In the absence of gravity or
viscous effects, the so-called invasion percolation models be-
came popular to model fluid displacement in rigid porous
media [9]. However, the history of modeling propagation on
a network is far more ancient. Eden first proposed a simple
cellular growth model in 1961 to describe tumor cell prolif-
eration [10]. About two decades later, the pioneering work of
Witten and Sanders [11,12] on diffusion-controlled aggrega-
tion triggered many works on cluster formation mechanisms
[13]. Among these, Mártin et al. [14] managed to define a
family of models able to interpolate continuously between the
Eden model and invasion percolation models, including clus-
ter growth along a privileged direction. Following this trend,
physicists have proposed many numerical models of invasion
percolation in a gradient, mainly a pressure gradient to ac-
count for gravity [15–20]. Under such conditions, percolation
pathways of immiscible fluids depend critically on the spatial

distribution of pore throats, local capillary overpressure
thresholds, and hydrostatic pressure gradients. This leads to
two distinct regimes: gravity-stabilized or unstabilized inva-
sion percolation [16,19,21].

In mobile porous media, however, the coupling between
the dynamics of the invading/defending fluids and grain
motion is complex. Modeling this coupling is not only com-
putationally demanding but also remains an open field of
research [22]. Nevertheless, these systems can be modeled
under certain approximations by considering propagation on
a network. The key idea consists in updating the network
properties after each gas pathway propagates through the en-
tire system, thus mimicking the actual modification of the
granular matrix caused by local particle movements. Although
simplistic, when carefully implemented, such models have
successfully captured, for instance, the morphology of the gas
invasion zone in immersed granular media [23,24].

In many real-world scenarios, fluid injection into porous
media may occur repeatedly over time. Under these condi-
tions, pathways created by earlier invasions directly influence
subsequent ones. Such memory effects arise from alterations
in the local capillary pressure field due to previous invasions,
thereby establishing preferential routes for subsequent fluid
migration. Once a fluid pathway is established, local hetero-
geneities are affected in such a way that it leaves behind a
preferential path that later invasions are more likely to follow.
This feedback mechanism causes repeated fluid migrations to
retrace or reinforce existing pathways, ultimately reshaping
the overall percolation pattern over multiple injection cycles.
However, only a few works have considered memory effects
in invasion percolation problems. A fundamental study focus-
ing on the problem of finding the path that minimizes the
sum of thresholds in a two-dimensional (2D) square lattice
has demonstrated that this rule assigns long-term memory
to the invasion front, with a direct connection to invasion
percolation in a gradient [25]. More recently, an experimental
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FIG. 1. (Left) Schematic of the grain arrangement and gas prop-
agation through the porous structure. At each pore, the gas has four
possible directions to invade, indicated by red arrows. (Right) Matrix
representation of the same configuration. Outlined squares indicate
the reference position of specific pores, serving as a visual guide be-
tween the two panels. Black squares mark the pores already invaded
by the gas, while gray squares denote available (yet uninvaded) sites.

study on cyclic fluid displacement in a disordered medium
with an effective gravity has pointed out the emergence of
hysteresis and memory in the front propagation [26]. Previous
studies have shown the importance of quantifying and predict-
ing localized fluid injection and propagation in a disordered
medium submitted to a pressure gradient [23,24,27]. These
studies demonstrated that, in this configuration, repeated in-
vasion pathways lead to a global invasion zone characterized
by contours well-described by a diffusionlike process [23].
However, to our knowledge, no work has considered the effect
of memory in such a problem.

This work considers immiscible fluid propagation in a
disordered porous medium in the presence of gravity—for
instance, gas rising in an immersed granular medium. Its
originality lies in considering a localized fluid injection rather

than a front propagation, and to include a history-dependent or
memory term. This simple numerical model is able to capture
the main features of memory-driven path selection. By adjust-
ing a parameter that weights the impact of prior percolation
events, we investigate how gas pathways stabilize, branch, or
shift when varying the intensity of the memory effects.

II. NUMERICAL APPROACH

Following the approach presented in [23,24], we model
the system as a two-dimensional matrix, in which each ma-
trix element represents the void space between four grains
(Fig. 1). The matrix dimensions (515 × 651; height × width)
are chosen sufficiently large to minimize boundary effects and
ensure the formation of well-defined percolation paths. Each
node (i, j) is initially implemented with two contributions: (i)
a capillary overpressure representing the threshold to over-
come for the gas to propagate through this pore (node); this
capillary overpressure is drawn from a Gaussian distribution
with standard deviation σP representing local heterogeneities;
(ii) a linear pressure gradient δph, representing the hydrostatic
pressure gradient due to gravity [Fig. 2(a)]. At the beginning
of each iteration k, gas is locally injected from a central
point at the bottom boundary of the matrix [Fig. 2(b), starting
point for k = 1]. Previous studies suggest that air propagation
in such systems can be characterized as a diffusive process
with an effective diffusion coefficient D = D(χ ), where the
dimensionless parameter χ = σP/ρgd quantifies the ratio be-
tween the standard deviation σP of the capillary overpressure
distribution at the pore scale and the characteristic hydrostatic
pressure variation ρgd across a grain diameter d [23,24,28].
Consequently, the advancement of the air path is governed by
the local capillary heterogeneity, represented by δpc(σP ), and
by the net pressure difference δpt = δpc(σP ) − δph, which
encapsulates the interplay between capillary and hydrostatic

FIG. 2. Illustration of the percolation path simulation process. (a) The porous medium is modeled as a two-dimensional square lattice
(bottom). Each node is assigned a capillary overpressure threshold drawn from a normal distribution centered at zero with standard deviation
σP = 1, representing the distribution of capillary overpressure thresholds δpc(σP ) (top). After each path, the lattice is reinitialized with new
values sampled from the same distribution. In addition, a linear pressure gradient δph is added, generating the initial condition Ck (bottom).
Memory effects are added from the second path on [see (c)]. (b) Example of the first invasion (k = 1). The panel displays the initial condition
C1, the starting point, and the iterative progression. The percolation path (in black) advances by selecting, among the neighboring cells (light
blue), the one with the minimum pressure. The path ends when reaching the top row (here, after n iterations). (c) Example of a subsequent
pathway (k > 1). The memory from the previous invasion k − 1 is imposed by subtracting α from every cell Tk−1(i, j) visited in the previous
trajectory, yielding Mk = Ck − αTk−1 (light gray cells). Each path ends upon reaching the top row (here, after n′ iterations). The procedure is
repeated for each subsequent pathways.
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pressures. In all simulations, we set χ = 140 to ensure an
extensive lateral exploration of the medium and to facilitate
a rigorous assessment of memory effects on the system’s
evolution.

The simulation starts by initiating the percolation pro-
cess from the starting point through the matrix Ck=1(i, j)
consisting of both contributions of the capillary threshold
overpressure distribution and the hydrostatic pressure gradient
[Fig. 2(a)]. At each iteration, the advancing path is determined
by selecting, among the four nearest neighbors (up, down, left,
right), the cell with the minimum pressure value [Fig. 2(a),
light blue cells]. This procedure effectively mimics the prefer-
ential flow of air through regions of minimal resistance within
an immersed porous medium in a gravity field. The first gas
pathway (k = 1) stops when reaching the top row [Fig. 2(b),
right]. At the beginning of each subsequent gas pathway
(k > 1), a new matrix Ck (i, j) is generated [Fig. 2(c)], whose
elements represent the capillary threshold overpressures re-
drawn from the same normal distribution [Fig. 2(a), up],
to which the hydrostatic pressure gradient is added again
[Fig. 2(a), down]. In addition, to account for memory effects, a
history term weighted by the parameter α is introduced, which
biases the trajectory based on the previously explored path
(k − 1). The matrix through which we consider the percola-
tion process for the path k is therefore defined as

Mk (i, j) =
{

C1(i, j), k = 1,

Ck (i, j) − α Tk−1(i, j), k � 2,
(1)

where Tk−1 is the track followed by the gas in the previous
iteration, defined as Tk−1(i, j) = 1 if the cell was part of
the (k − 1)th gas pathway, and Tk−1(i, j) = 0 otherwise. The
parameter α represents a constant pressure value subtracted
from previously invaded sites. Given that the typical pressure
fluctuations in the matrices Ck have a standard deviation of
unity, varying α from 0 (no memory) up to 4 (strong memory)
effectively tunes the strength of memory effects relative to
the characteristic pressure scale of the system. By subtracting
α at these locations, the matrix Mk retains a memory of the
prior trajectory [Fig. 2(c), light gray cells], thereby favoring
continuity and mitigating abrupt deviations in subsequent path
selections. Similarly to k = 1, the iterative process for each
subsequent path k ends once the percolation path reaches the
top row of the matrix [Figs. 2(b) and 2(c), right images].
For each value of α, we run the simulation for N subsequent
pathways. Unless specified, in the following, N = 5000.

Figure 3 displays the effect of the memory term by com-
paring two consecutive channels. In the absence of memory
(α = 0), only sporadic overlaps are observed near the injec-
tion point—a consequence of random intersections between
independent paths. As the memory parameter increases, three
key phenomena emerge: (i) an increased number of repeated
paths, (ii) a tendency for overlap regions to be retraced,
particularly in the vertical direction, and (iii) a progressive
localization of the channel, leading to reduced lateral ex-
ploration. These cumulative effects give rise to characteristic
percolation structures, which will be discussed in detail in the
following section.

FIG. 3. Two successive paths, Tk (dark red) and Tk+1 (light blue),
are shown for different values of memory α. The overlap between
consecutive trajectories is highlighted in black. As α increases, paths
increasingly retrace previously explored channels, making the over-
lap more pronounced. In the absence of memory (α = 0), overlaps
occur only sporadically, forming isolated clusters (zoom in inset).

III. RESULTS

In this section, we first analyze the global behavior of the
system by examining the cumulative effect of multiple sim-
ulated gas pathways, distinguishing between total trajectory
density and local overlaps between successive pathways (see
Sec. III A). We explore specifically how varying the strength
of the memory parameter influences the persistence of initially
imposed conditions throughout subsequent invasions. Next,
we investigate local statistical characteristics of the trajec-
tories (Sec. III B), highlighting differences in dynamics and
statistical distributions between newly explored and repeat-
edly visited regions. Finally, we perform a morphological
analysis (Sec. III C), quantifying how memory effects shape
the overall orientation and spatial organization of gas path-
ways.

A. Global morphology

To characterize the overall shape and pattern resulting
from the superposition of individual percolation paths, we
define two normalized quantities: the cumulative path density
ρc(x, z) and the overlap density ρo(x, z). These metrics rep-
resent, respectively, the total accumulation of trajectories and
the regions shared by successive paths. Their mathematical
definitions, normalized by the total number of iterations N ,
are given by

ρc = 1

N

∑
k

Tk , (2)

ρo = 1

N

∑
k

(Tk � Tk+1), (3)

where � denotes the Hadamard matrix product, correspond-
ing to the elementwise matrix multiplication, (Tk � Tk+1)i j =
(Tk )i j (Tk+1)i j .

Figure 4 shows the results for different values of the mem-
ory parameter α. The first noticeable effect is that increasing
the influence of the previous path stabilizes the air channel.
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FIG. 4. Global morphology for N = 5000 trajectories as a function of the memory parameter α. (Top row) Cumulative path density, ρc(x, z)
[Eq. (2)]. As the memory weight α increases, the percolation channel becomes narrower, and the formation and stabilization of lateral branches
become increasingly pronounced. (Bottom row) Overlap density, ρo(x, z) [Eq. (3)], representing the history of the system. The evolution of
history, on average, progresses from the injection point at the bottom and gradually loses its symmetry as the air channel stabilizes. For a
high memory value (α = 3, right images), both densities ρc and ρ0 exhibit similar patterns. Indeed, the initial percolation path dominates the
process, regardless of the different pressure distribution on the network from one iteration to the other. The white contour line corresponds to
the threshold of 1%, beyond which density values become negligible.

In the absence of memory (α = 0), the cumulative density
is broadly distributed (Fig. 4, top left image) and the as-
sociated movement is diffuse, whereas the overlap density
remains low and is confined near the injection point (Fig. 4,
bottom left image). As the memory weight increases, the
lateral exploration diminishes, yielding narrower density dis-
tributions dominated by specific lateral branches (Fig. 4, top
panel). Simultaneously, the overlap density grows in mag-
nitude and progressively converges towards the cumulative
density (Fig. 4, bottom panel). This behavior is attributed to
the fact that as consecutive paths become increasingly similar,
their difference remains nearly constant.

Influence of the initial condition

Since the simulation incorporates a memory effect across
multiple realizations, the choice of the initial condition is,
in principle, significant. To assess the influence of the first
generated path on subsequent trajectories, we examine the
evolution of two predefined initial conditions: (i) a straight
vertical path connecting the virtual injection point to the sur-
face, and (ii) a zigzag path exhibiting a square pattern (Fig. 5,
left column). These trajectories are composed of vertical and
horizontal straight lines due to the restriction imposed by
the identification algorithm, which exclusively selects lateral
neighbors under a four-neighbor connectivity scheme (see
Sec. II), thereby precluding the detection of diagonal neigh-
bors in subsequent iterations.

Figure 5 illustrates the evolution of the cumulative
path density, ρc(x, z), over a series of iterations N =
[1, 10, 100, 1000, 3000, 5000] for four distinct values of the
memory parameter, α = [0.4, 1.2, 2, 3]. Regardless of the ini-
tial condition, for α < 2, the initial trajectory rapidly loses
its characteristic structure within approximately the first 100
iterations. In contrast, for α � 2, the initial invasion structure
persists over a larger number of iterations (≈3000), although

it eventually transitions into a final pattern, losing the memory
of the first path. For high memory values (α = 3.0), we also
tested a more pronounced zigzag path as an initial condition
(Fig. 5, last line of the bottom panel). Despite its significant
difference from the two other initial conditions, we observe
that the system also loses memory of this initial path when
the number of iterations becomes sufficiently large. A sup-
plemental movie [29] illustrates the evolution of both of the
initial conditions for the four memory values shown in Fig. 5.

Overall, these findings indicate that, even when simulations
start from different initial configurations, their subsequent
evolution converges into statistically similar patterns. Notably,
the initial number of explored events along the first imposed
path (Ni = 515 and 915 for a vertical and zigzag line, re-
spectively) is rapidly erased and significantly increases by the
second iteration (∼7000 visited points for α = 0.4 and ∼4000
for α = 3). This suggests that the system quickly explores a
broad set of new neighboring sites, leading to the immediate
loss of memory of the initial condition, regardless of the im-
posed trajectory. Importantly, these results highlight that even
for large memory values, the influence of the initial pathway
remains transient. This observation is further corroborated in
the next section, where we analyze the properties of local
trajectories to gain deeper insight into how memory influences
path selection.

B. Local trajectories

To gain deeper insight into the local dynamics, we plot in
Fig. 6, as a function of the iteration number k, the number of
points Nc(k) explored by the current trajectory Tk , along with
the number of repeated (or overlapping) points Nr (k) between
Tk and Tk−1. In the absence of memory [Fig. 6(a), α = 0], Nc

and Nr fluctuate over time with no discernible correlation. As
α increases, a correlation emerges between the two signals,
such that variations in one are reflected in the other [Fig. 6(a),
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FIG. 5. Evolution of the cumulative path density ρc(x, z) as a function of the iteration number N , for two different imposed initial paths (of
length Ni, see the left column): a vertical line (Ni = 515) and a square-pattern zigzag (Ni = 915). The top, central, and bottom panels display
the results for different memory values α. For high memory (α = 3.0, bottom panel), a more pronounced zigzag has been tested (Ni = 4315,
bottom line, see text). Color bar is the same as in Fig. 4.
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FIG. 6. Statistical characterization of local trajectories. (a) Num-
ber of visited points for the current path, Nc(k) (in red), and the
repeated points, Nr (k) (in black), as a function of the iteration number
k for different values of α. When α increases, Nc and Nr converge
toward each other. (b) Probability density functions (PDFs) of Nc

(red) and Nr (gray) for no memory (α = 0, left) and strong memory
(α = 2, right). Both distributions are asymmetric, skewed toward
lower values, and well-fitted by a Gumbel distribution (solid black
lines). (c) Scatter plot showing the relationship between repeated
points Nr and current points Nc. Without memory, these quantities are
uncorrelated. With increasing α, correlation strengthens, eventually
converging onto the line Nr = Nc for large memory (α = 4).

α = 1.2]. Moreover, when the influence of the previous path
becomes stronger, Nc and Nr converge [Fig. 6(a), α = 2.0].
The figure also shows that repeated trajectories undergo sharp
drops at specific moments (indicated by vertical black lines).
These abrupt decreases occur when the path suddenly deviates
and no longer follows its predecessor (see the supplemental
video [29]). However, such deviations become increasingly
rare as the memory weight α grows.

Figure 6(b) illustrates the probability density function
(PDF) of Nc (red) and Nr (gray) for the no-memory case (α =
0, left panel) versus the high-memory case (α = 2.0, right
panel). The distribution of the repeated points is narrower than
that of the current path, and it is also shifted to lower values,

FIG. 7. Average values, computed over N iterations, for the
number of points per trajectory (〈Nc〉, red circles), the number of
repeated points (〈Nr〉, black triangles), and the number of newly
explored points that were not part of the previous trajectory (〈Nd〉,
blue squares). As the memory parameter α increases, the difference
between consecutive trajectories decreases, and the number of re-
peated invaded points converges to that of the original trajectory.
A critical transition occurs near α ≈ 1, where repeated points start
to dominate new explorations. Yellow dots and white squares corre-
spond to data from two different initial conditions (a vertical line and
a square-pattern zigzag).

resulting in a systematically smaller average. Both PDFs are
asymmetric and exhibit light tails, and they can be fitted using
a Gumbel distribution:

f (x) = 1

β
exp [−(z + e−z )], (4)

where z = (x − μ)/β, μ is the mean, and β is the scale param-
eter controlling the spread of the distribution. The solid black
lines in Fig. 6(b) represent fits to the PDFs using the Gumbel
distribution given in Eq. (4). It is worth noting that although
the original pressure distribution in the medium is Gaussian,
the process of selecting local minima to determine the trajec-
tory Tk effectively transforms it into a Gumbel distribution,
reflecting the nonlinear nature of path selection.

Figure 6(c) shows the overall correlation between the re-
peated points, Nr , and the total number of visited points in
the current path, Nc. In the absence of memory (α = 0, blue
points), these two variables are uncorrelated. As α increases
(light and dark gray points), their scatter is reduced and they
become progressively more correlated. For very large memory
values (α = 4, black points), Nr converges toward Nc, causing
the data points to align on the line Nr = Nc.

We now analyze the average number of points associated
with three variables: the current path 〈Nc〉, the difference be-
tween two consecutive paths 〈Nd〉, and the repeated path 〈Nr〉.
By construction, the current path consists of both new (differ-
ence) and repeated components, i.e., Nc = Nd + Nr . Figure 7
summarizes the evolution of these quantities as a function of
α. Initially, 〈Nc〉 increases and reaches a maximum at approx-
imately α ≈ 1, after which it gradually decreases. In contrast,
the number of repeated points, 〈Nr〉, steadily grows until it
eventually matches Nc, while the number of new points, 〈Nd〉,
continually declines. A critical point emerges around α ≈ 1,
where 〈Nd〉 and 〈Nr〉 become comparable.
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Additionally, Fig. 7 shows results for different initial con-
ditions. Notably, whether the trajectory starts as a zigzag path
(and hence contains more points) or as a straight vertical
path, subsequent iterations converge to a similar range in all
cases. This observation illustrates the self-regulating nature of
the percolation process, in which the influence of the initial
condition diminishes as the system evolves. The critical value
α = 1 is directly tied to the capillary overpressure σP = 1
used in the simulations, as it represents the threshold at which
memory effects begin to dominate. Specifically, when α > σP,
the imposed memory exceeds the pore-size distribution width,
favoring a preferential path selection that effectively overrides
local variations in the immediate neighborhood.

C. Path orientation

Finally, we focus on the morphology and orientation of the
gas trajectories by quantifying how their preferred direction
evolves as a function of the memory strength α. To this end,
each trajectory is analyzed geometrically by fitting an equiva-
lent ellipse characterized by a centroid and major/minor axes
[Fig. 8(a)]. The orientation angle θ of each fitted ellipse is then
defined relative to the vertical axis.

In the absence of memory (α = 0), paths exhibit a clear
vertical symmetry (〈θ ≈ 0〉), reflecting unbiased propagation
predominantly aligned with the gravity-induced pressure gra-
dient. As α increases, the symmetry breaks progressively,
resulting in trajectories with increasingly inclined orientations
[Fig. 8(b)]. Such a shift indicates that paths become more con-
strained and biased, progressively retracing and reinforcing
specific preferred channels across multiple invasions.

The temporal evolution of the orientation angle θ tran-
sitions from a highly variable distribution at low memory
(α ≈ 0) toward stabilization on specific paths at larger values
of α, separated by large jumps [Fig. 8(c)]. To further quantify
the lateral confinement of the trajectories, we compute the
horizontal accumulation defined as

nx(x, k) = 1

N

∑
z

ρc(x, z), (5)

where N is the total number of iterations. nx(x, k) represents
the vertical average of cumulative trajectories across the hor-
izontal axis. The spatiotemporal diagram of nx is represented
in Fig. 8(d) for different values of α. The evolution of the
orientation angle θ , superimposed on the panels (white line),
reveals a clear correlation with the predominant orientation of
the trajectory.

IV. DISCUSSION

In this section, we explore the statistical properties govern-
ing the selection process between new and previously visited
sites. As previously mentioned, the number of points in the
current path Nc and the number of repeated points between
successive trajectories Nr follow distributions whose minima
are well described by Gumbel distributions [Fig. 6(b)]. We
define the probability P(α) as the ratio between the average
number of repeated points Nr and the total number of visited

FIG. 8. Morphological analysis of a trajectory. (a) Each trajec-
tory (in blue) is treated as a single object for calculating geometric
properties. An ellipse (in red) is fitted to quantify the orientation
angle θ with respect to the vertical axis. (b) Probability density
function (PDF) of the orientation angle θ for three values of α.
When the memory increases, trajectories transition from a symmetric
exploration around the vertical to a stabilization towards a single per-
colation channel at a specific angle. (c) Evolution of the orientation
angle for different values of α. For low memory values, the angle
exhibits high-frequency variations, which gradually stabilize as the
memory effect increases. (d) Spatiotemporal diagram of the hori-
zontal cumulation, nx . nx correlates with the system’s orientation, as
indicated by the overlaid white line (from top to bottom, α = 0, 1, 2).

points Nc per trajectory:

P = 〈Nr〉
〈Nc〉 , (6)

thus quantifying the bias toward revisiting previously oc-
cupied paths. To describe its dependence on the memory
parameter α, we adopt a logistic functional form:

P(α) = 1

1 + exp
(

α−α0
s

) , (7)
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FIG. 9. Probability P(α) of selecting repeated sites as a function
of the memory parameter α. Symbols represent the numerical data,
and the solid line indicates the fit by a logistic function [Eq. (7)] with
a sharpness s ≈ 0.56. The crossover α0 � σP = 1 marks a balanced
selection (50%) between repeated and new sites.

where α0 is the characteristic memory strength at which there
is equal probability (50%) of selecting either repeated or new
sites, and s characterizes the sharpness of this transition. Note
that, although extreme value theory demonstrates that the dif-
ference between two independent Gumbel-distributed random
variables follows a logistic distribution, here we empirically
adopt the logistic functional form as a phenomenological fit to
quantify the probability P(α) = 〈Nr〉/〈Nc〉. This ratio directly
measures the probability of reinvasion and effectively char-
acterizes the relative shift between distributions associated
with opening new pores versus reinvading previously opened
ones.

Figure 9 shows the probability P(α), computed from our
numerical model (symbols) and the fit with the logistic model
from Eq. (7). The function captures well the data, with α0 =
1.0 � σP and a sharpness s ≈ 0.56. Notably, the condition
P(α = 0) = 0.5 does not generally hold due to asymmetries
in the number of visited versus unvisited sites available at
each step. In our simulations, the crossover occurs α0 � σP =
1, indicating that a moderate memory effect is required to
achieve equal likelihood (50%) of selecting repeated versus
new sites. Furthermore, even without memory (α = 0), the
observed probability does not start at 0 but exhibits a baseline
determined by the intrinsic probability of random overlaps,
leading typically to a probability less than 0.1. This base-
line reflects the intrinsic spatial correlation among trajectories
resulting from their stochastic intersections, estimated to be
approximately 0.08 in our simulations. Although this intrinsic
overlap probability could depend on the parameter χ , which
controls the lateral dispersion of trajectories, a detailed explo-
ration of this relationship is beyond the scope of this work.

At high memory strength (α > 3), the selection probabil-
ity approaches unity (around 90%), significantly enhancing
repeated visits and reinforcing stable percolation paths.
This regime demonstrates a strong memory effect, effec-
tively confining gas trajectories within established preferential
channels.

V. CONCLUSION

This study analyzed the impact of memory effects on
gas percolation dynamics within a water-saturated porous

medium through a simplified two-dimensional numerical
model. Our approach introduces a memory term that mod-
ulates the percolation pathways by preferentially weighting
previously invaded sites, thereby reflecting the history-
dependent nature of the process. We systematically investi-
gated the role of the memory parameter α, observing how
it shapes the spatial distribution and morphology of the gas
invasion pathways.

Increasing the memory parameter progressively con-
fines gas paths into fewer, more clearly defined channels.
At high memory values, gas preferentially revisits previ-
ously established pathways, leading to stable and persis-
tent channels dominating local random capillary threshold
fluctuations.

We observed that initially imposed conditions temporarily
influence path development, but their effects rapidly diminish
with subsequent iterations. Consequently, simulations ini-
tialized with distinctly different invasion patterns ultimately
converge toward statistically similar global configurations.
This transient influence underscores the self-organizing
characteristic of memory-driven percolation dynamics, high-
lighting the robustness of channel formation against initial
perturbations.

Statistical analyses of trajectory data reveal that the distri-
butions of the explored points follow a Gumbel distribution,
due to the nonlinear selection of pressure minima. Further-
more, a logistic function accurately describes the probability
of selecting previously invaded sites, indicating an apparent
threshold behavior driven by the interplay between memory
strength and local heterogeneities. Importantly, even without
explicit memory (i.e., α = 0), we found a baseline repeti-
tion probability arising from inherent random intersections
between independent pathways.

These findings collectively demonstrate how memory
effects significantly shape gas percolation patterns, under-
scoring the importance of considering historical interactions
in multiphase flow models in porous media. Future in-
vestigations could extend this analysis by exploring three-
dimensional scenarios, multiple injections where interactions
between air channels occur [30], or incorporating more com-
plex pore-scale interactions to enhance the model’s realism
and predictive power.
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